

-

$$
a=\Delta+\sqrt{r}\left(r \quad a=\Delta-\sqrt{r}\left(r \quad a=-\frac{\sqrt{\Delta}}{r}\left(r \quad a=\frac{\sqrt{\Delta}}{r}()\right.\right.\right.
$$

§- مجموع دو عدد صحيح متمايز از نصف حاصلرب آنها، 「واحد بيشتر است. اكر يكى از اعداد ربع عدد ديگر باشد، تفاضل اين دو عدد كدام است؟

$$
\begin{gathered}
\sqrt{11}-1(1 \\
r \sqrt{11}-r(r \\
\sqrt{11}+1(r \\
r \sqrt{11}+r(r
\end{gathered}
$$

-

\qquad $-r(r$
r(
 (lf
(4) بیشمار
$r(r$
$1(r$
(1) صفر
(10- سحهمى y=x
$(-1,-\Delta)\left({ }^{c}\right.$
$(1,-1)(\Gamma$
$(-1,-v)(r$
$(1,1)(1$

$-1<m<r(4$
$\mathrm{m}>\circ$ (Γ
$m>-1(r$
$-1<\mathrm{m}<\circ$ ()

$$
\begin{aligned}
& \text { حل ,ينزيى سزوالات اين رنترپ را در } \\
& \text {, DriQ.com ششاهره كنير. }
\end{aligned}
$$

(x

$$
\begin{gathered}
\mathrm{ac}<\cdot() \\
\mathrm{bc}<\cdot(\uparrow \\
\mathrm{ab}<\cdot(\uparrow \\
\mathrm{abc}<\cdot(\uparrow
\end{gathered}
$$

$$
\begin{array}{rr}
\{-r,-r,-\Delta, \cdots\}(r & \{0,-r,-r,-\Delta, \cdots\}(1 \\
\{-r,-r, \cdots\}(r & \{-r,-r, \cdots\} \cup\{0\}(r
\end{array}
$$

共
$10(4$
$11(\%$
Ir (r
Ir (1

هندسه (1)

آץ- در مثلث قائمالزاويةٔ ABC ، طول ارتفاع وارد بر وتر برابر با 9 واحد است. اگر نسبت دو پارهخطى كه ارتفاع روى وتر ايجاد مىكنــد 9 بــه 18 باشد، طول وتر كدام است؟

$1(\gamma$
$10 / 0(1$

r/AN(1

- / 人 (
r/Af(r
$\operatorname{HFA}\left(Y^{c}\right.$
 $\frac{100}{q}\left(\mu \quad \frac{\omega_{0}}{\mu}(r) \quad\right.$ ro()

حل ويدنويى سؤالات اي. رنترچ را در
ربسايت DriQ.com ششاهره كني.
سؤال دهم رياضى

- نقطةٔ MF را روى ضلع AB از مستطيل ABCD طورى انتخاب میكنيم كه با رسم عمود MN بر ضلع CD ، دو مستطيل حاصل متشابه باشــند.

اتَ نسبت مساحت اين دو مستطيل

$\operatorname{l/r}(1$
$1 / 9(Y$
$\circ / \wedge(r$
$1 / \wedge(4$

$$
\frac{\Delta}{r}(1
$$

$$
\frac{f}{r}(r
$$

$$
\frac{r \Delta}{q}(r
$$

$$
\frac{19}{9}(4
$$

r) مجموع زواياى داخلى آن برابر با
¢ ¢ ضلعى وجود دارد كه با امتداد آن، شكل در دو طرف خط قرار مىگيرد.
r^ـ كدام گزينه همواره صحيح است؟

محل انجام محاسبات

$$
\begin{aligned}
& \text { Y (Y) چهارضلعى كه قطرهاى آن منصف هم باشند، متوازى الاضلاع است. } \\
& \text { ٪) جهارضلعى كه قطرهايش بر هم عمود باشند، لوزى است. }
\end{aligned}
$$

F $(r$
$r \sqrt{r}(r$
$f \sqrt{r}(1$
 مساحت ABC $\begin{gathered}\Delta \\ \text { چقدر است؟ }\end{gathered}$

$$
1 / \Delta(f
$$

$\mu / \Delta(r$
$r(r$
$r(1$

DriQ.com

لحظهٔ برخورد با سطح زمين و انرڭى مكانيكى گَلولهها در لحظهٔ برخورد با سطح زمين صحيح مىباشد؟ (از مقاومت هوا صرفنظر كنيد.)
$\mathrm{E}_{\mathrm{B}}>\mathrm{E}_{\mathrm{A}}, \mathrm{V}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}{ }^{(r} \quad \mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{B}}, \quad \mathrm{v}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}{ }^{(r} \quad \mathrm{E}_{\mathrm{B}}>\mathrm{E}_{\mathrm{A}}, \quad \mathrm{v}_{\mathrm{A}}<\mathrm{v}_{\mathrm{B}}{ }^{(r} \quad \mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{B}} \quad, \mathrm{v}_{\mathrm{A}}>\mathrm{V}_{\mathrm{B}}(1)$

چچند زول است؟
$00 \circ(1$
$900(1$
$1000(\%$
人OO (Y
rr - مطابق شكل زیر، جسمى تحت تأثير نيروى با تندى ثابت طى مسافت d متوقف مىشود. تندى جسه چس از طى نيمى از مسافت d چند متر بر ثانيه مىباشد؟ (مقاومت هــوا نــاچيز اســت و نيــروى

اصطكاك بين سطح و جسمر را در طول حركت جسم، ثابت در نظر بگَيريد.)
$1 \cdot \sqrt{r}(r$
$1 \cdot \sqrt{\Delta}(1$
$1 \cdot \sqrt{r}(r$
\% رفت و برگشت تلف شده باشد، تندى گَلوله در لحظهٔ برخورد به سطح زمين و بيشترين ارتفاعى كه گلوله از سطح زمين بالا مىرود، به ترتيب از راست به چֶ برحسب SI در كدام گزينه به درستى آمدهاند؟ (مبدأ انرزى پتانسيل گرانشى را سطح زمين فرض كنيد.)
re $9 \sqrt{1 \circ}(4$
$40 / 0_{-} 9 \sqrt{1 \circ}(4$
$H \circ / D_{-} \operatorname{Ir} \sqrt{\Delta}(t$ - $1 r \sqrt{\Delta}(1$

V | فيزيك
 حل وينويى سؤالات اي. رنترچ~ را ر
 ربسايت DriQ.com ششاهره كني.
 سؤال دهم رياضى
 هr- مطابق شكل مقابل، اكر گلولهاى به جرم kg ا راز بالاى سطح شيبدارى به ارتفاع ॰ه متــر رهــا كنيه، تلوله با تندى ror به سطح زمين مى برسد. اكر اندازؤ كار نيروى مقاومت هوا بر روى گَلوله در اين جابهجايى برابر IoJ باشد، اندازء نيروى اصطكاك بين گَلوله و سطح چند نيوتــون اســ؟؟ (g=10 $\frac{\mathbf{m}}{\mathbf{s}^{r}}$)
 r/q(${ }^{(}$
 1/9 (1
 9/9 (Y
 $11 / 9(1$

צץ- بالابرى جسمى به جرم lookg را با تندى ثابت در مدتزمان rom Fos از سطح زمين بالا مىبرد. اكر توان ورودى اين بالابر YoooW باشد،

ra/rager

ra (r
$\Delta \circ / r \Delta(r$
$\Delta \circ(1$

$$
\begin{aligned}
& \text { كدام گَزينه در مورد نيروى مقاومت هواى وارد بر كَلوله در طـى اين حركت صحيح است؟ } \\
& \text { () كار نيروى مقاومت هوا بر روى تكلوله در مسير رفت و بركَشت برابر مىكاشد. } \\
& \text { (Y) كار نيروى مقاومت هوا بر روى كَلوه در مسير رفت و بركشت يكديگًر را خنثى كردماند. } \\
& \text { ؟ (اندازء نيروى مقاومت هوا در مسير رفت بيشتر از مسير بركشت مىياشد. } \\
& \text { (Y) نيروى مقاومت هوا در مسير رفت و بركشت يكديگًر راخنثى كردهاند. }
\end{aligned}
$$

rı
 سطح زمين بالا رفته است؟

 انرثى جنبشى گَلوله

ج. Fo جسمى را توسط بالابرى از سطح زمين به بالاى ساختمان منتقل مىكنيم. اگر بخواهيم در مدتزمان كمترى ايـن انتقــال رخ دهــد، راهكــار

$$
\begin{array}{r}
\text { | (ارائهشده در كدام كزينه صحيح مىباشد؟ بايد از بالابرى با بازده بيشتر استفاده كنيه. }
\end{array}
$$

كنيد و سطح زمين را به عنوان مبدأ انرثى پتانسيل در نظر بعيريد.)

$$
\text { D0 (r } \quad r \mu / r(r \quad r \Delta(r) \quad \text { ro () }
$$

 ترتيب از راست به چپ برحسب واحد SI در كدام گزينه به درستى آمدهاند؟

$$
\text { برابر با YooW باشد، بازده او چند درصد است؟ (} \quad \text { (}) \text {) }
$$

$9 \circ(4$
va (r
$90(T$
Do (1)
 پرتاب توپ و در امتداد جابهجايى توپ به بزرگَى 1 ا بر آن وارد مىكند. با حشهپوشى از مقاومت هوا تندى سنگَ هنگَام جدا شــدن از

دست پسربچه چند متر بر ثانيه است؟ $r \cdot \sqrt{r}(1$ $10 \sqrt{r}(r$ $r \cdot \sqrt{r}(r$ $r \Delta \sqrt{r}(4$

 از اتلاف انرثى صرفنظر كنيد.)

$$
\begin{aligned}
& \text { 「ץ) بايد از بالابرى با توان مصرفى بيشتر استفاده كنيم. } \\
& \text { Y) بايد از بالابرى با توان مصرفى كمتر استفاده كنيه. }
\end{aligned}
$$

Y\＆
برابر حركت جسم برابر با N ا باشد، چپ از طى Y•m جابهجايی، تندى جسم چند متر بر ثانيه مىشود؟

 اندازءٔكار نيروى اصطكاك بر روى جسم در اين جابهجايى برابر با YOJ باشد، اندازءٔ نيروى F چند نيوتون است؟（از مقاومت هوا صرفنظر كنيد．）

$$
\left.\begin{array}{lll}
Y 90(Y & Y \circ 0(r & 194(r
\end{array}\right) \quad 100(1)
$$

 روى چترباز را ثابت در نظر بعيريد．）

F०人F。（ $¢$
r9180（r
Y00．0（r
NFO（1
－Fq－مطابق شكل زير، جسمى به جرم rkg با تندى

جنبشى گلوله به گرما تبديل شود، حداكثر انرثى ذخيرهشده در فنر چند زول خواهد بود؟

Ho（1
人。（r
$r \circ(r$
G4（f）

$$
\begin{aligned}
& \text { چند متر بر ثانيه خواهد بود؟ } \\
& \text { () سرعت كلوله در نقطءٔ O به صفر مىرسد و تا نقطةٔ C بالا نمىرود. } \\
& \text { Y) سرعت كلوله در نقطءٔ B به صفر میرسد و تا نقطةٔ C بالا نمىرود. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yo (} \\
& \text { صفر (Y }
\end{aligned}
$$

اه－چه تعداد از عبارتهاى زير درست است؟
－نيتروثن و اكسيزن، تنها كازهاى هواكره هستند كه در زندگى روزانه نقش حياتى دارند．
－زندگى جانداران گوناگون در زيستكره با گازهاى موجود در هوا، گره خورده است． －َياهان با بهرهگَيرى از نور خورشيد، اكسيزن مورد نياز خود را توليد مىكنند． －جانداران ذرهبينى، كَاز نيتروثن هواكره را براى مصرف گَياهان در خاك تثبيت مىكنند．

${ }^{\mu}\left({ }^{(}\right.$

$r(r$
$r(r$
$1(1$

－فراوانى كَاز X در لايءٔ ترو يوسفر، كمتر از دو كاز ديعًر است．
－كازهاى A و E به شكل مولكولهاى دواتمى در طبيعت يافت مىشوند． －تفاوت نقطهٔ جوش كازهاى A و X ، كمتر از تفاوت نقطهٔ جوش كَازهاى X و E است． －مقايسهٔ ميان واكنشپپيرى اين گازها به صورت A＜X＜E است．
F（
$r(r$
r（r
（1）
r－چچه تعداد از موارد زير جزو كاربردهاى فراوانترين گاز هواكره به شمار مىرود؟
－پر كردن تاير خودروها • انجماد موادغذايیى（صنعت سرماسازى）
－یر كردن كپسول غواصى • ن نگَهدارى نمونههاى بيولوزيك در پزشكى
${ }^{f}(f$

KI •	$\mathbf{Z n C l}_{Y}$－		NO．	FeO ．	$\mathrm{N}_{\mathrm{r}} \mathrm{O}$－
	MgF ${ }_{\text {r }}$ 。		ICl	CrBr_{Y} 。	CuS－
rires		$r . r(r$		r．rer	r．r（）

هـه در ساختار لوويس چه تعداد از مولكولهاى زير پيوند دوكانه وجود دارد؟
$\mathrm{SOF}_{r} \cdot \mathrm{CH}_{r} \mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{COCl}_{r} \cdot \quad \mathrm{POCl}_{r}$
（ ${ }^{4}$
$r(r$
$r(r$ f（1

- در ساختار لوويس نيتروزن مونوكسيد همانند نيتروثن دىاكسيد، اتم نيتروثن به آرايش هشتتايى نرسيده است. - شمار جفت الكترونهاى ناپيوندى مولكول سيليسيم تترابرميد، سه برابر شمار جفت الكترونهاى پيوندى مولكول كربن دىسولفيد است.
- ساختار لوويس كربن تتراكلريد مشابه ساختار گوكَرد تترافلوئوريد است. - اتمى با آرايش الكترون نقطهاى :X̣: مىتواند بيش از يكى پيوند كووالانسى تشكيل دهد. $\mathcal{F}^{(f)}$ $r(r$
$r(r$

آ) مرجانها گروهى از كيسهتنان با اسكلت داراى خاصيت بازى هستند.

ب) هر اكسيد فلزى را مىتوان يكى اكسيد بازى در نظر گرفت، زيرا از واكنش آنها با آب، باز توليد مىشود. پ) كاغذ pH در آب گَازدار و مخلوط آب و سديم اكسيد به ترتيب به رنگَ قرمز و آبى درمى آيد.

ت) با افزايش مقدار كربن دىاكسيد محلول در آب، خاصيت اسيدى آب و pH آن افزايش مى يابد.

$$
\begin{array}{r}
\mathrm{KI}+\mathrm{NaClO}_{r}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{I}_{r}+\mathrm{KCl}+\mathrm{H}_{r} \mathrm{O}(\mathrm{l} \\
\mathrm{H}_{r}+\mathrm{H}_{r} \mathrm{~S}+\mathrm{CaCO}_{r} \rightarrow \mathrm{CaS}+\mathrm{CO}+\mathrm{H}_{r} \mathrm{O}(r \\
\mathrm{KCN}+\mathrm{Cl}_{r}+\mathrm{KOH} \rightarrow \mathrm{KOCN}+\mathrm{KCl}+\mathrm{H}_{r} \mathrm{O}(r \\
\mathrm{H}_{r} \mathrm{~S}+\mathrm{Cl}_{\Gamma}+\mathrm{H}_{r} \mathrm{O} \rightarrow \mathrm{H}_{r} \mathrm{SO}_{r}+\mathrm{HCl}\left(\mathrm{H}^{\digamma}\right.
\end{array}
$$

$$
\begin{aligned}
& \text { حل ,ينزيى سزوالات اين رنترپ را در } \\
& \text {, DriQ.com شاهسره كنيا }
\end{aligned}
$$

－ردیاى دىاكسيد حاصل از نفت خام（به عنوان منبع توليد برق）در مقايسه با زغالسنگى و كاز طبيعى به ترتيب كمتر و بيشتر است． －ردیاى كربن دىاكسيد حاصل از انرثى خورشيد（به عنوان منبع توليد برق）در مقايسه باكَرماى زمين و نيز باد بيشتر است． －سوختى كه در هواپیماها استفاده مىشود از نفت سفيد بوده و ردیاى كربن دىاكسيد آن ناچیی است． －يكى از راههاى كاهش ردیای كربن دیاكسيد، استفاده از انرزى الكتريكى است． F（ $r(r$ $r(r$

اء－با توجه به معادلههاى زير، چه تعداد از عبارتهاى پيشنهادشده در ارتباط با اين دو معادله، پس از موازنه درست است؟
a） $\mathrm{Al}_{\Gamma} \mathrm{O}_{\Gamma}+\mathrm{IF}_{\Delta} \rightarrow \mathrm{AlF}_{\Gamma}+\mathrm{IF}+\mathrm{O}_{\Gamma}$
b） $\mathrm{FeS}+\mathrm{SiO}_{\boldsymbol{r}}+\mathrm{O}_{\boldsymbol{r}} \rightarrow \mathrm{FeSiO}_{\boldsymbol{r}}+\mathrm{SO}_{\boldsymbol{r}}$

> - • نسبت مجموع ضرايب فراوردهها به مجموع ضرايب واكنشدهندهها در واكنش a برابر r است.
－مجموع ضرايب تركيبهاى يونى در واكنش a برابر \＆است． －ضريب اكسيزن در دو واكنش با هم برابر است．
f（ ${ }^{\text {f }}$
$r(r$
r（r
1 （1）

مىكند. جرم اكسيثن مصرف شده چند گَرم است؟ (C=1r, H=1, O =19:g.mol

آ）تاكنون در ايران گَاز هليه از گَاز طبيعى جداسازى نشده، در صورتى كه در پتروشيمى شيراز گَاز آرگون از تقطير هواى مايع تهيه مىشود． ب）هر دو كَاز، بیرنگَ، بىبو و غيرسمى هستند． پ）گَازهاى آركَون و هليم به ترتيب نخستين و دومين كاز نجيب فراوان لايهٔ تروپوسفر هواكره هستند． ت）هر دو به صورت تكاتمى در طبيعت يافت شده و جزو عنصرهاى دستئ p هستند．

«ت» ،巛«»（¢	«ت» ،＂ب（r	«پ» «¢إ（Y	《ب» «1》（1

حل ويدنويى سؤالات ايـ رنترچ را در
,بسايت DriQ.com ششاهره كنير.
 - جهت حركت پرتوهاى A برخلاف پرتوهاى B از بالا به پايين است.

- مولكولهاى X به طور حتم يكى از گازهاى HYO و CO
 - مولكولهاى X Xوجب خارج شدن گرماى آزادشده از سطح زمين شده و بدين ترتيب زمين راگرم مىكنند.

() نوع فراوردهها در واكنش سوختن سوختهاى فسيلى، به مقدار اكسيزن در دسترس بستگى دارد.

Y از از سوختن زغالسنگَ مىتوان دو كاز با خاصيت اسيدى توليد كرد.
r٪) برخى كشاورزان، آهك را به عنوان اكسيد فلزى براى افزايشى برهورى در كشاورزى به گياهان تزريق مىكنند.
¢) استفاده از كاز آرگون براى جوشكارى فلزها، بر استحكام و طول عمر فلز جوشكارى شده مىافزايد.
ฯ؟- چه تعداد از عبارتهاى زير درست است؟

- هواكره براى زمين همانند لايءٔ پلاستيكى براى گَلخانه است و سبب گرم شدن كرهٔ زمين مىشود.
- اكر هواكره وجود نداشت، دماى هر نقطه از كره زمين به 1^^ - هنگَامى كه پرتوهاى خورشيدى به زمين تابيده مىشود، بخش عمدهاى از اين پرتوها به وسيلةُ هواكره جذب مى شود. - در يك روز زمستانى، تغيير دماى درون گَلخانه، كمتر از بيرون گَلخانه است. ${ }^{f}\left({ }^{(}\right.$ $r(r$ $r(r$
- - چV
- يكى از ويزگَىهاى مهمم واكنشهاى شيميايى اين است كه همهٔ آنها از قانون پايستگى جرم پيروى مىكنند. - در معادلئ واكنش، رسوب، مذاب و بخار به ترتيب با نمادهاى (s) ، (aq) و (g) نشان داده مىشود.
- فلز پیاتين كاتاليزكر مناسبى براى واكنش ميان گازهاى هيدروثن و اكسيرن است.
- هر تغيير شيميايى شامل يكى واكنش شيميايى است كه مىتوان آن را با يكى معادله نشان داد.
$r(f$
$1(r$
$r(r$
f()

$$
\begin{aligned}
& \text { حل ويئنيى سروالات اير رنترحه را در } \\
& \text {, DriQ.com مشايت }
\end{aligned}
$$

 منبع توليد برق اين خانه، نفت خام باشد، اين خانه در ماه چند كيلووات ساعت برق مصرف مىكند؟ (مقدار ץCO توليدشده در ماه (برحسب كيلوگرم)

Y) ميانگين جهانى دماى سطح زمين	() مساحت سطح برف در نيمكرء شمالى
¢ ¢	ץ) ميانگین جهانى سطح آبهاى آزاد
	چه تعداد از مطالب زیر در ارتباط با گاز

- فراورده واكنش سوختن گَوگرد است.
 - آن را مىتوان از دهانةُ آتشفشانهاى فعال جمع آورى كرد.

fir
$r(r$

「 دفتر چه شماره

آزمـون شماره
$\|1001 / 11 / r\|$

دوره دوم متوسطه

شهاره داوطبلب:	
	Vo. F

عناوين مواد امتحانى آزمون گروه آزمايشى علوم رياضى، تعداد سؤالات و مدت پاسخگويى

مدت پاسخكويى	شمارهسؤلا		تعدادسؤال	مـواد امتـحانى		رديف
	تا	از				
¢0	r.	1	r.	رياضى	$\begin{aligned} & \frac{3}{0} \\ & \frac{3}{3} \end{aligned}$	1
	$\mu \cdot$	H	1.	هندسه		
¢ Y دقيقه	0.	m	r.	فيزيك		Y
r.	v.	01	r.	شيمى		r

آ آ00.

ممشاوروبربنامصريزكآكو
www.gaj.ir نشانى اينترنتى

مديريت آزمون: ابوالفضل مزرعتى
بازبينى و نظارت نهايى: سارا نظرى
 بازبينى دفتر چه: بهاره سليمى - عطيه خادمى

ويراستاران فنى: ساناز فلاحى ـ مرواريد شاهدسينى ـ مريه ثار سائيان - سييدمسادات شريفى ـ عاطفه دستخوش سرپر ست واحد فنى: سعيده قاسمى صفحهآرا: فرهاد عبدى طراح شكل: آرزو كلفر حروفنگًاران: مينا عباسى - ميناز كاظمى - فرزانه رجبى - ربابه الطافى ـ حديث فيضالهى

بــه نــام خــدا

حقوق دانشآموزان در آزمونهاى سراسرى گَاج

داوطلب گر امى ؛ با سلام در اينجا شما را با بخشى از حقوق خود در آزمونهاى سراسرى گاج آشنا مىنماييم :
 حرج شَده باشد.
r- آزمونهاى سر اسرى كاج بابد راس ساعت اعام شده در دفتر جه، شروع و خاتمه يابد .

 - مراجعه به نمايندآكى .

 - بررسى كارنامه آزمون توسط رإبط تحصصيلى در هر آزمون ه .
 مراتب را اطلاع دهيد.

صداى دانسُّآموز اسنـ.

$\Rightarrow a^{r}-r \varepsilon>\circ \Rightarrow a^{r}>r \varepsilon \xrightarrow{\text { ج }}|a|>\varphi \Rightarrow a>91 a<-\varepsilon$ تنهها $a=\Delta+\sqrt{r}$ در شرط $a>9$ صدق مىكند.

$x+\frac{x}{r}=\frac{1}{r}\left(x \times \frac{x}{r}\right)+r \Rightarrow x+\frac{x}{r}=\frac{x^{r}}{\Lambda}+r$
$\Rightarrow \frac{1}{\Lambda} x^{r}-\frac{\Delta}{r} x+r=0 \xrightarrow{x \lambda} x^{r}-1 \circ x+19=0$

, $S=\frac{\left(r+\frac{a}{r}\right) \times a}{r}=10 \Rightarrow r a+\frac{1}{r} a^{r}=r 。$
$\Rightarrow \frac{1}{r} a^{r}+r a-r_{0}=0$
$\Delta=r^{r}-r\left(\frac{1}{r}\right)\left(-r_{0}\right)=r+r_{0}=r \varphi$
$\Rightarrow a=\frac{-r \pm \sqrt{r 4}}{r\left(\frac{1}{r}\right)}=\frac{-r \pm r \sqrt{11}}{1}=\left\{\begin{array}{l}-r+r \sqrt{11} \\ -r-r \sqrt{11}(ق \text { ق }\end{array}\right)$

$$
y=r(x-m)^{r}-r \Rightarrow S(m,-r)
$$

بنابراين محـور تقـارن سـهمى X=m مى Xباشـد و چحـون سـؤال گفتـه محـور تقارن X=1 مى Xباشد پس m=1 است و داريم:
$x_{S}+y_{S}=m-r=1-r=-r$
$y=x^{r}+r x+n$
$x_{S}=\frac{-b}{r a}=\frac{-r}{r(1)}=-1 \xrightarrow{S(m, 1-m)}\left\{\begin{array}{l}m=-1 \\ y_{S}=1-(-1)=r\end{array}\right.$
$y=x^{r}+r x+n \xrightarrow{S(-1, r)} r=(-1)^{r}+r(-1)+n$
$\Rightarrow r=1-r+n \Rightarrow n=r+1=r$
$x(x+\sqrt{4})-\wedge=\circ \Rightarrow x^{r}+\sqrt{4} x=\wedge$
حال نصف ضريب X را به توان r مىرسانيم و به طرفين اضافه مىكنيه: $\left(\frac{\sqrt{\varepsilon}}{r}\right)^{r}=\frac{\varepsilon}{r}=\frac{r}{r}$

$\Delta=$
$a x^{r}-r x+r=0 \xrightarrow{\Delta=0}(-r)^{r}-r(a)(r)=0 \Rightarrow 1 \varepsilon-1 r a=0$
$\Rightarrow 1 \mathrm{ra}=1 \varepsilon \Rightarrow \mathrm{a}=\frac{19}{1 r}=\frac{r}{r}$
و بنابراين ريشهٔ مضاعف برابر است با:
$x=\frac{-b}{r a}=\frac{-(-r)}{r\left(\frac{r}{r}\right)}=\frac{r}{\frac{\Lambda}{r}}=\frac{r \times r}{\Lambda}=\frac{r}{r}$
$\left(x^{r}-x\right)^{r}+r \sqrt{r}\left(x^{r}-x\right)-\varepsilon=0 \xrightarrow{x^{r}-x=t} t^{r}+r \sqrt{r} t-\varphi=0$
$\Delta=b^{r}-r a c=(r \sqrt{r})^{r}-r(1)(-q)=1 r+r r=r \varepsilon$
$\mathrm{t}=\frac{-\mathrm{b} \pm \sqrt{\Delta}}{r \mathrm{a}}=\frac{-r \sqrt{r} \pm \sqrt{r \varepsilon}}{r(1)}=\frac{-r \sqrt{r} \pm \varepsilon}{r}=-\sqrt{r} \pm r$
$\Rightarrow\left\{\begin{array}{l}t=-\sqrt{r}+r \Rightarrow x^{r}-x=-\sqrt{r}+r \\ t=-\sqrt{r}-r \Rightarrow x^{r}-x=-\sqrt{r}-r\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}x^{r}-x+\sqrt{r}-r=0 \Rightarrow \Delta=(-1)^{r}-r(\sqrt{r}-r)=1-r \sqrt{r}+1 r \\ =1 r-r \sqrt{r}>0 \\ x^{r}-x+\sqrt{r}+r=0 \Rightarrow \Delta=(-1)^{r}-r(\sqrt{r}+r)=1-r \sqrt{r}-1 r \\ =-11-r \sqrt{r}<0\end{array}\right.$
پr
ريشه داريم.

جواب معادله در معادله صدق مىكند:
$r \mathrm{mx}^{r}+\vee \mathrm{x}+r \mathrm{~m}-1=0 \xrightarrow{\mathrm{x}=-r} r \mathrm{~m}(-r)^{r}+v(-r)+r \mathrm{~m}-1=0$
$\Rightarrow \wedge \mathrm{m}-1 r+r \mathrm{~m}-1=\circ \Rightarrow 1 \circ \mathrm{~m}=1 \Delta \Rightarrow \mathrm{~m}=\frac{1 \Delta}{1 \circ}=1 / \Delta=\frac{r}{r}$
بنابراين معادله به صورت زير است:
$r\left(\frac{r}{r}\right) x^{r}+\vee x+r\left(\frac{r}{r}\right)=1 \Rightarrow r x^{r}+\vee x+r-1=0$
$\Rightarrow r x^{r}+v x+r=$ 。
$\Delta=v^{r}-r(r)(r)=r q-r r=r \Delta \Rightarrow x=\frac{-v \pm \sqrt{r \Delta}}{r(r)}=\frac{-v \pm \Delta}{q}$
$\Rightarrow\left\{\begin{array}{l}x=\frac{-V+\Delta}{q}=-\frac{r}{q}=-\frac{1}{r}: \quad, \quad \\ x=\frac{-V-\Delta}{q}=-\frac{r}{q}=-r\end{array}\right.$

H 1F If $y=x^{r}-r x=x(x-r) \Rightarrow x_{S}=\frac{0+r}{r}=\frac{r}{r} \Rightarrow y_{S}=\frac{r}{r}\left(-\frac{r}{r}\right)=-\frac{q}{r}$ $y=-x^{r}+r x-r=-\left(x^{r}-r x+r\right)=-(x-r)^{r} \Rightarrow S(r, 0)$

در دو نقطه با طول مثبت يكديگر را قطع مىكنند.

روش دوم: معادلئ تلاقى دو نمودار را حل مىكنيم:
$\left\{\begin{array}{l}y=x^{r}-r x \\ y=-x^{r}+r x-r\end{array} \Rightarrow x^{r}-r x=-x^{r}+r x-r\right.$
$\Rightarrow x^{r}-r x+x^{r}-r x+r=0 \Rightarrow r x^{r}-v x+r=0$
$\Delta=(-V)^{r}-r(r)(Y)=Y q-r r=I V \Rightarrow . r$
$x=\frac{-(-V) \pm \sqrt{1 V}}{r(Y)}=\frac{V \pm \sqrt{1 V}}{Y} \Rightarrow$ هر دو ريشه مثبت است.

F

$y=x^{r}+r x-r$
$x_{S}=\frac{-r}{r(1)}=-1 \Rightarrow y_{S}=(-1)^{r}+r(-1)-r=-0$
$\Rightarrow S(-1,-\Delta)$
al با باشـد، بايـد x x 19 و a>0 باشد:

$\left\{\begin{array}{l}\mathrm{a}>\circ \Rightarrow \mathrm{m}+1>\circ \Rightarrow \mathrm{m}>-1 \\ \Delta<\circ \Rightarrow(-r)^{r}-r(\mathrm{~m}+1)(1)<\circ\end{array}\right.$

$y=a x^{r}-r \circ x+r \circ$
$x_{S}=\frac{-\left(-r_{0}\right)}{r a}=\frac{10}{a}$
$y_{S}=\Lambda_{0} \Rightarrow \Lambda_{0}=a\left(\frac{l_{0}}{a}\right)^{r}-r \circ\left(\frac{l_{0}}{a}\right)+r_{0}$
$\Rightarrow \Lambda_{0}=a\left(\frac{l_{00}}{a^{r}}\right)-\frac{r_{00}}{a}+r_{\circ} \Rightarrow \frac{100}{a}-\frac{r_{0} 0}{a}=q_{0}$
$\Rightarrow-\frac{100}{a}=9 . \Rightarrow 9 \circ a=-100 \Rightarrow a=-\frac{100}{90}=-\frac{10}{q}=-\frac{\Delta}{r}$
 زير است: $y=a(x-h)^{r}+k$

در نتيجه داريم:

$$
y=(x-1)^{r}+r \Rightarrow y=x^{r}-r x+1+r
$$

$$
\Rightarrow y=x^{r}-r x+r \Rightarrow\left\{\begin{array}{l}
m=-r \\
n=r
\end{array} \Rightarrow m \times n=-\wedge\right.
$$

r

$\Rightarrow\left\{\begin{array}{l}a+b+r=0 \\ r a-r b+r=0\end{array} \Rightarrow\left\{\begin{array}{l}r a+r b=-\varepsilon \\ r a-r b=-r\end{array}\right.\right.$

$$
q a=-q \Rightarrow a=-\frac{q}{q}=-\frac{r}{r}
$$

$a+b+r=0 \Rightarrow b=-r-a \xrightarrow{a=-\frac{r}{r}} b=-r+\frac{r}{r}=-\frac{r}{r}$
$\Rightarrow y=-\frac{r}{r} x^{r}-\frac{r}{r} x+r$

$y=a(x+r)(x-1) \xrightarrow{(0, r)} r=a(\circ+r)(\circ-1) \Rightarrow-r a=r$
$\Rightarrow a=-\frac{r}{r} \Rightarrow y=-\frac{r}{r} \underbrace{(x+r)(x-1)}_{x^{r}+x-r}=-\frac{r}{r} x^{r}-\frac{r}{r} x+r$
r ir
$y=-r(x-1)^{r}+r \Rightarrow S(1, r)$
ها تلاقى با محور $y=0 \Rightarrow y=-r(-1)^{r}+r=-r+r=-1$ با رسم نمودار سهمى دادهشده داريم:

$r \quad r_{0}$
$\left|\frac{x+1}{r}-r\right| \geq r \Rightarrow\left\{\begin{array}{l}\frac{x+1}{r}-r \geq r \\ \frac{x}{r}-r \leq-r\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\frac{x+1}{r} \geq r+r \xrightarrow{x r} x+1 \geq r \times 0 \Rightarrow x \geq 10-1 \Rightarrow x \geq 9 \\ \frac{x+1}{r} \leq-r+r \xrightarrow{x r} x+1 \leq r \times(-1) \Rightarrow x \leq-r-1 \Rightarrow x \leq-r\end{array}\right.$
$\Rightarrow \mathrm{x} \geq$ १८ $\mathrm{x} \leq-r \Rightarrow \mathrm{x} \in \mathbb{R}-(-r, q)$

عدد صحيح)
11

$\stackrel{\Delta}{\mathrm{BH}} \sim \mathrm{A} \stackrel{\Delta}{\mathrm{C}} \mathrm{H} \Rightarrow \frac{\mathrm{BH}}{\mathrm{AH}}=\frac{\mathrm{AH}}{\mathrm{CH}} \Rightarrow \mathrm{AH}^{r}=\mathrm{BH} \times \mathrm{CH}$
$\xrightarrow{\mathrm{AH}=\varsigma} \mathrm{BH} \times \mathrm{CH}=\boldsymbol{\varphi}^{r}=r \varphi(*)$
$\frac{\mathrm{BH}}{\mathrm{CH}}=\frac{9}{19} \Rightarrow \mathrm{BH}=9 \mathrm{x}, \mathrm{CH}=19 \mathrm{x}(* *)$

$\xrightarrow{\mathrm{x}>0} \mathrm{x}=\frac{\varepsilon}{1 r} \Rightarrow \mathrm{x}=\frac{1}{r} \xrightarrow{(* *)} \mathrm{BH}=\frac{q}{r}, \mathrm{CH}=\frac{1 q}{r}=\lambda$
$\Rightarrow \mathrm{BC}=\mathrm{BH}+\mathrm{CH}=\frac{q}{r}+\lambda=\frac{q+1 q}{r}=\frac{r \Delta}{r}=r / \Delta$

ارتفاعها برابر با نسبت تشابه است.

$\stackrel{\Delta}{\mathrm{BC}} \sim \stackrel{\Delta}{\mathrm{A}} \mathrm{HC} \Rightarrow \mathrm{k}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{q}{\sqrt{\varepsilon^{r}+\Lambda^{r}}}=\frac{q}{10}$
$\Rightarrow\left\{\begin{array}{l}\frac{\mathrm{HH}^{\prime}}{\mathrm{AH}}=\mathrm{k}=\frac{\varepsilon}{10}(*) \\ \frac{\mathrm{AH}}{\mathrm{AB}}=\mathrm{k}=\frac{\varepsilon}{10} \Rightarrow \frac{\mathrm{AH}}{\Lambda}=\frac{\varepsilon}{10} \Rightarrow \mathrm{AH}=\frac{\mu \lambda}{10}=\mu / \mathrm{l}\end{array}\right.$
$\xrightarrow{(*)} \frac{\mathrm{HH}^{\prime}}{\mu / \lambda}=\frac{\varepsilon}{10} \Rightarrow H^{\prime}=\frac{\varphi \times \mu / \lambda}{10}=\frac{r \Lambda / \lambda}{10}=r / \Lambda \Lambda$
$\left\{\begin{array}{l}y=\frac{1}{r} x^{r}+m x+n \xrightarrow{y} \frac{1}{r} x^{r}+m x+n=-x+1 。 \\ y=-x+10\end{array}\right.$
$\Rightarrow \frac{1}{r} x^{r}+(\mathrm{m}+1) \mathrm{x}+\mathrm{n}-10=0$
$\left\{\begin{array}{l}\xrightarrow[x=-1]{x=1} \frac{1}{r}(-1)^{r}+(m+1)(-1)+n-10=0 \\ \underset{r}{ }(\Delta)^{r}+(m+1)(\Delta)+n-1 \circ=0\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\frac{1}{r}-\mathrm{m}-1+\mathrm{n}-1 \circ=0 \\ \frac{r \Delta}{r}+\Delta \mathrm{m}+\Delta+\mathrm{n}-1 \circ=0\end{array} \Rightarrow\left\{\begin{array}{l}\mathrm{m}-\not \angle=-1 \circ / \Delta \\ \underline{\Delta \mathrm{m}+\not \partial=-\mathrm{L} / \Delta}\end{array}\right.\right.$
$9 \mathrm{~m}=-1 \wedge \Rightarrow \mathrm{~m}=-r$
$x_{S}=\frac{-m}{r\left(\frac{1}{r}\right)}=\frac{-(-r)}{1}=r$
$\mathrm{ac}<\circ, \mathrm{bc}>\circ, \mathrm{ab}<\circ, \mathrm{abc}<0$
$P(x) \leq \circ \Rightarrow \frac{x^{r}+x}{x^{r}+r x-r} \leq 0 \Rightarrow \frac{x\left(x^{r}+1\right)}{x^{r}+r x-r} \leq 。$

$$
\begin{aligned}
& \text { X =ريشٔ صورت: } \\
& x^{r}+1=\circ \Rightarrow \text { همواره مثبت } \Rightarrow \text { ريشه ندارد } \\
& x^{r}+r x-r=0 \Rightarrow \Delta=r^{r}-r(1)(-r)=1 r \\
& \Rightarrow A=\frac{-r \pm \sqrt{1 r}}{r(1)}=\frac{-r \pm r \sqrt{r}}{r} \\
& \Rightarrow x=-1 \pm \sqrt{r} \text { ريشههاى مخرج } \\
& \\
& \text { بنابراين جواب نامعادلئ } \mathrm{P}(\mathrm{x}) \text { برابر است با: } \\
& (-\infty, \overbrace{-1-\sqrt{r}}^{-r / v}) \cup[0, \overbrace{-1+\sqrt{r}}^{o / v}) \xrightarrow{x \in \mathbb{Z}}\{-r,-\varphi,-\Delta, \cdots\} \cup\{0\}
\end{aligned}
$$

 محدب است. (مثل هضلعى، غضلعى و ... منتظم)
 N/

برسی كزينمها: rA

$\Rightarrow \hat{\mathrm{D}}_{1}=\hat{\mathrm{B}}_{1} \Rightarrow \mathrm{AD} \| \mathrm{BC}$
(Y YT وقتى مثلث اول بيشـترين محـيط را دارد كـه نسـبت تشـابه بيشترين مقدار باشد، يعنى در بين نسبتهاى تشـابه ممكـن زيـر، بزرگتــرين مقدار را انتخاب مىكنيم:

$$
\left\{\begin{array}{l}
k=\frac{\Delta}{\Delta}=1(ق \hat{\varepsilon}) \\
k=\frac{\Delta}{\varphi} \checkmark \\
k=\frac{\Delta}{9}
\end{array}\right.
$$

(F YF مساحتها k
$k^{r}=\frac{f}{q}$

(توجه كنيد كه
$\left\{\begin{array}{l}(1) \Rightarrow r x=r a \Rightarrow x=\frac{r}{r} a \\ (r) \Rightarrow r a=q a-r x-r \Rightarrow r x-v a=-r\end{array}\right.$
$\Rightarrow r\left(\frac{r}{r} a\right)-v a=-r \Rightarrow \frac{q}{r} a-v a=-r \Rightarrow \frac{q-1 \varphi}{r} a=-r$
$\Rightarrow-\frac{\Delta}{r} a=-r \Rightarrow a=\frac{r}{\frac{\Delta}{r}}=\frac{\varepsilon}{\omega}=1 / r \xrightarrow{x=\frac{r}{r} a} x=\frac{r}{r} \times 1 / r=1 / \Lambda$
$1 r \Delta$
$\left\{\begin{array}{l}\mathrm{MN} \| \mathrm{BC}, ~ م و ر ب \mathrm{AB} \Rightarrow \hat{\mathrm{M}}=\hat{\mathrm{B}}\end{array}\right.$
$\{\hat{A}=\hat{A}$

در مثلث قائمالزاويه، ميانُٔ وارد بر وتر نصف وتر است:
$\mathrm{AM}=\frac{1}{r} \mathrm{BC} \Rightarrow r=\frac{1}{r} \mathrm{BC} \Rightarrow \mathrm{BC}=я(1)$
$\mathrm{AM}=\mathrm{MC}=\frac{1}{r} \mathrm{BC} \Rightarrow \hat{\mathrm{A}}_{1}=\hat{\mathrm{C}}=10^{\circ}$
$\Rightarrow \hat{\mathrm{M}}_{1}=10^{\circ}+10^{\circ}=0^{\circ} \Rightarrow \hat{\mathrm{A}}_{Y}=90^{\circ}$
حالا ميانء 'HM را در مثلث قائمالزاويه AHM رسم مىكنيهم و داريم: $\left.\begin{array}{l}\mathrm{HM}^{\prime}=\mathrm{AM}^{\prime}=\frac{1}{r} \mathrm{AM} \\ \hat{\mathrm{A}}_{Y}=90^{\circ}\end{array}\right\} \Rightarrow \mathrm{AHM}^{\prime}$ متساوى الاضلاع $\Rightarrow \mathrm{AH}=\mathrm{AM}^{\prime}$ و در نتيجه داريهم
$\mathrm{AH}=\mathrm{AM}^{\prime}=\frac{1}{r} \mathrm{AM}=\frac{r}{r}(r)$
$(1),(r) \Rightarrow S_{\Delta \Delta}^{\Delta B C}=\frac{1}{r} \mathrm{AH} \times \mathrm{BC}=\frac{1}{r} \times \frac{r}{r} \times \varepsilon=\frac{q}{r}=r / \Delta$

به طور مشابه O $\stackrel{\Delta}{\text { O A B }}$ و همرنهشتاند و در نتيجه: $\hat{A}_{1}=\hat{C}_{1} \Rightarrow \mathrm{AB} \| \mathrm{CD}$
و بنابراين ABCD يكى متوازى الاضلاع است.

X

x نيست. (مربع نيست.)
(1 Yq وقتى وسط اضلاع مستطيل را به هم وصل مىكنيم يك لـوزى حاصل مىشود، زيرا بنا به قضيهٔ تالس داريم: $\left\{\begin{array}{l}\mathrm{MN} \| \mathrm{AC}, \mathrm{MN}=\frac{1}{r} \mathrm{AC} \\ \mathrm{PQ} \| \mathrm{AC}, \mathrm{PQ}=\frac{1}{r} \mathrm{AC}\end{array} \Rightarrow\left\{\begin{array}{l}\mathrm{MN} \| \mathrm{PQ} \\ \mathrm{MN}=\mathrm{PQ}=\frac{1}{r} \mathrm{AC}\end{array}\right.\right.$

و به طور مشابه:
$\left\{\begin{array}{l}\mathrm{MQ} \| \mathrm{BD}, \mathrm{MQ}=\frac{1}{r} \mathrm{BD} \\ \mathrm{PN} \| \mathrm{BD}, \mathrm{PN}=\frac{1}{r} \mathrm{BD}\end{array} \Rightarrow\left\{\begin{array}{l}\mathrm{MQ} \| \mathrm{PN} \\ \mathrm{MQ}=\mathrm{PN}=\frac{1}{r} \mathrm{BD}\end{array}\right.\right.$
و چون در مستطيل قطرها برابرند (AC=BD) پس هر چهارضلع حاصل بـا هم برابرند و شكل لوزى است. و چون اين لوزى داراى زاوئء 4 است، داريهم:
$\left\{\begin{array}{l}\mathrm{MQ}=\mathrm{PQ} \\ \hat{\mathrm{Q}=90^{\circ}} \Rightarrow \mathrm{H} \Rightarrow \mathrm{\Delta} \\ \mathrm{MPQ} \Rightarrow \mathrm{MP}=\mathrm{MQ}=\mathrm{PQ} \text { (1) }, ~\end{array}\right.$
از طرفى داريه:
$=\wedge \Rightarrow \uparrow \times M Q=\wedge \Rightarrow M Q=r$

از طرفى در مثلث متساوىالاضلاع MPQ ارتفاع برابر با AM است و داريم:
 و در نتيجه مساحت مستطيل برابر با
$\hat{\mathrm{A}}=90^{\circ}, \hat{\mathrm{B}}=V 0^{\circ} \Rightarrow \hat{\mathrm{C}}=10^{\circ}$

حالا يكبار ديگر با استفاده از قضيه كار و انرزی جنبشى، تندى جســم را پـس از طى مسافت r

$\mathrm{W}_{\mathrm{t}}=\mathrm{K}_{\mathrm{r}}^{\prime}-\mathrm{K}_{\mathrm{l}} \Rightarrow \mathrm{W}_{\mathrm{f}}=\mathrm{K}_{\mathrm{r}}^{\prime}-\mathrm{K}_{\mathrm{l}}$
$\Rightarrow-\mathrm{f} \frac{\mathrm{d}}{r}=\frac{1}{r} \mathrm{mv}^{\prime r}-\frac{1}{r} \mathrm{~m} \times\left(r_{0}\right)^{r}$
$\xrightarrow{(*)}-\mathrm{f} \times \frac{1}{r} \times \frac{r \circ \circ \mathrm{~m}}{\mathrm{f}}=\frac{1}{r} \mathrm{mv}^{\mu}-r \circ \circ \mathrm{~m}$

$\Rightarrow \mathrm{v}^{\prime r}=r_{\circ} \Rightarrow \mathrm{v}^{\prime}=1 \cdot \sqrt{r} \frac{\mathrm{~m}}{\mathrm{~s}}$
Y FF انرزى مكانيكى اولئُ كلوله برابر است با:

(1) $\frac{1}{\text { (\%) }}$

$E_{1}=K_{1}+\dot{ष}_{1} \Rightarrow E_{1}=\frac{1}{r} \mathrm{mv}_{1}^{r}$
$\xrightarrow{v_{1}=10 \Lambda \div r / q=r \cdot \frac{m}{s}} E_{1}=\frac{1}{r} \times \frac{r_{0} 0}{1000} \times\left(r_{0}\right)^{r}=9 \cdot J$
 خود را در اثر نيروى مقاومت هوا از دست داده است، پس داريم:
$E_{r}=E_{1}-\frac{r_{0}}{100} E_{1} \Rightarrow E_{r}=90-\frac{r_{0}}{100} \times 9_{0}=9_{0}-1 \Lambda=V r J$ و داريه:
$E_{r}=K_{r}+\dot{U} / r \Rightarrow E_{r}=K_{r} \Rightarrow V r=\frac{1}{r} \times \frac{r_{00}}{1000} \times v_{r}^{r}$
$\Rightarrow v_{r}^{r}=V r_{0} \Rightarrow v_{r}^{r}=\sqrt{V r^{\circ}}=1 r \sqrt{\Delta} \frac{\mathrm{~m}}{\mathrm{~s}}$
از آنجا كه اندازءٔ نيروى مقاومت هوا در مسير رفـت و بركشـت يكسـان فـرض شـده است، پس نيمى از انرثى تلفشده در مسير رفت تلف شده است، در نتيجه داريم:
$E_{Y}=E_{1}-\frac{10}{100} E_{1} \Rightarrow E_{Y}=90-\frac{10}{100} \times 90=11 \mathrm{~J}$
$E_{Y}=\dot{\dot{K}_{Y}}+U_{Y} \Rightarrow E_{Y}=U_{Y} \Rightarrow E_{Y}=m g h$
بنابراين:
$\Rightarrow \Lambda 1=\frac{r_{00}}{1000} \times 10 \times h \Rightarrow h=r_{0} / \Delta \mathrm{m}$
دقت كنيد: وقتى كلوله به بيشترين ارتفاع خـود از سـطح زمــين مىرســ، بـراى لحظهاى تندى آن صفر مى شود و سپس به سمت پإيين شروع به حركت مىكند.

پايسته است. (مبدأ انرزى پتانسيل را از سطح زمين در نظر مىگيريم.)
كَلولئ A:

$E_{1}=E_{T} \Rightarrow \dot{K}_{1}+U_{1}=K_{r}+\dot{U_{r}}$
$\Rightarrow \mathrm{mgh}=\frac{1}{r} \mathrm{mv}_{\mathrm{A}}^{r} \Rightarrow \mathrm{v}_{\mathrm{A}}=\sqrt{\mathrm{rgh}}$

كلولؤ B:

$$
\begin{aligned}
& E_{1}=E_{r} \Rightarrow \dot{K_{1}}+U_{1}=K_{r}+\dot{U_{r}} \\
& \Rightarrow r m g h=\frac{1}{r} \times r \operatorname{mv}_{B}^{r} \Rightarrow v_{B}=\sqrt{r g h}
\end{aligned}
$$

بنابراين تندى كلولهها در لحظهٔ برخورد با سطح زمين با هم برابر هستند: $\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}$

همرچنين انرزى مكانيكى كلولهها در لحظؤ برخورد به زمين برابر است با:
$\mathrm{E}_{\mathrm{A}}=\mathrm{K}_{\mathrm{r}}+\mathrm{U}_{\mathrm{r}} \Rightarrow \mathrm{E}_{\mathrm{A}}=\frac{1}{r} \mathrm{mv}_{\mathrm{A}}^{r} \quad: \mathrm{A}$
$E_{B}=K_{r}+\dot{U}_{Y} \Rightarrow E=\frac{1}{r} \times r \mathrm{mv}_{\mathrm{B}}^{r}=\mathrm{mv}_{\mathrm{B}}^{r} \quad: B$ كلولئ
$\mathrm{E}_{\mathrm{B}}>\mathrm{E}_{\mathrm{A}}$
بنابراين:
 و با توجه به نمودار دادهشده در سؤال داريم:
$t=\Delta s \Rightarrow v=1 \circ \frac{m}{s}$
$t=1 \circ s \Rightarrow v=r \circ \frac{m}{s}$
پس با توجه به قضيه كار و انرثى جنبشى داريه:
$W_{t}=K_{r}-K_{1} \Rightarrow W_{t}=\frac{1}{r} \times r \times\left(r_{0}\right)^{r}-\frac{1}{r} \times 4 \times(1 \circ)^{r}=90 \circ J$
(\vec{f} () روى جسـما
كار انجام مىدهد و با توجه به قضيه كار و انرثى جنبشى داريم:

$W_{t}=K_{r}-K_{1} \Rightarrow W_{f}=\stackrel{\circ}{K_{r}}-K_{1}$
$\Rightarrow-\mathrm{fd}=-\frac{1}{r} \mathrm{~m} \times\left(r_{0}\right)^{r} \Rightarrow \mathrm{~d}=\frac{r \circ \circ \mathrm{~m}}{\mathrm{f}}$

طبق صورت سؤال، 9 درصد اين كار در مسير بالا رفتن گَلوله انجام شده است در نتيجه：

部 $=W_{1}=W_{10} \times \frac{90}{100}$
$\Rightarrow W_{1}=-r \Delta \times \frac{90}{100}=-1 \Delta \mathrm{~J}$
در نتيجه انرثى مكانيكى گلوله در نقطهٔ اوج（بيشترين ارتفاع از سـطح زمـين） برابر است با：

h｜：

$E_{Y}=E_{1}-W_{1}$
$\Rightarrow \dot{K_{r}}+U_{r}=\left(K_{1}+\dot{\varphi}_{1}\right)-W_{1} \Rightarrow m g h=\frac{1}{r} m v_{1}^{r}-W_{1}$
$\Rightarrow \frac{100}{1000} \times 10 \times \mathrm{h}=\frac{1}{r} \times \frac{100}{1000} \times(r 0)^{r}-10 \Rightarrow \mathrm{~h}=r \circ \mathrm{~m}$
（1 rq پايسته است（سطح زمين را مبدأ پتانسيل گرانشى در نظر مىگيريم．）．

$\mathrm{E}_{1}=\mathrm{E}_{\mathrm{r}} \Rightarrow \dot{\circ}_{K_{1}}+\mathrm{U}_{1}=\mathrm{K}_{\mathrm{Y}}+\mathrm{U}_{\text {فنر }}$

$\Rightarrow \mathrm{mgh}=\uparrow \mathrm{K}_{\mathrm{r}} \Rightarrow \mathrm{mgh}=\uparrow \times \frac{1}{r} \mathrm{mv}^{r}$
$\Rightarrow v^{r}=\frac{g h}{r} \Rightarrow v^{r}=\frac{10 \times \Delta \circ}{r}=r \omega_{0} \Rightarrow v=\Delta \sqrt{1 \circ} \cdot \frac{m}{s}$
俍
به معناى انجام كار بيشتر در مدتزمان كمتر توسط دستگاه مىباشد．
（F FI با توجه به صرفنظر كـردن از مقاومـت هـــــا، انـرثى مكـانيكى
پايسته است، بنابراين بيشترين ارتفاعى كــه كَلوـهـ از سـطح زمــين بـالا ميـرود （نقطه اوج）برابر است با：

$\mathrm{E}_{1}=\mathrm{E}_{\mathrm{r}} \Rightarrow \mathrm{K}_{1}+\dot{\varphi}_{1}=\dot{K_{Y}}+U_{r} \Rightarrow \frac{1}{r} \mathrm{mv}^{r}=m g h_{1} \Rightarrow h_{1}=\frac{\mathrm{v}^{r}}{r_{\mathrm{r}}}$

دقت كنيد كه كار نيروهاى اتلافى مثل مقاومت هوا و ．．．منفى مىباشد، پس كار نيروى مقاومت هوا در اين سؤال برابر Jo I ا－مىباشد．

از طرفى با توجه به رابطءٔ كار انجامشده توسط نيروى ثابت داريم：

و براى محاسبئ d داريم：
$\sin r^{\circ}=\frac{\Delta_{0}}{d} \Rightarrow \frac{1}{r}=\frac{\Delta_{0}}{d} \Rightarrow d=1 \circ \circ \mathrm{~m}$
در نتيجه：
$W_{f}=-f d \Rightarrow-r 9_{0}=-f \times 100 \Rightarrow f=r / 9 N$
rer با با توجه به قضيه كار و انرثى جنبشى داريم：

توان خروجى بالابر برابر است با：
$P=\frac{W_{\text {W }}}{\Delta t} \Rightarrow P=\frac{r \times 10^{r}}{r_{0}}=00 \cdot \mathrm{~W}$
در نتيجه بازده برابر است با： lo

تندى برخورد گلوله با سطح زمـين بـا تنـدى پرتـاب آن برابـر است، بنابراين انرزى مكانيكى گلوله در لحظهٔ پرتاب و لحظهٔ برگشت بـه سـطح زمين برابر مىباشد．در نتيجه پايستگى انرزى مكانيكى در طول حركـت گَلوــهـ برقرار بوده است．
چس نيروهاى تلفكننده از جمله نيروى مقاومت هوا در طى حركت برابـر صـفر بوده است．پس كار نيروى مقاومت هوا در طى مسير رفت و برگَشت، مساوى و برابر صفر مىباشد．

هوا را در كل حركت كلوله به دست مىآوريم：
$W_{t}=K_{r}-K_{1} \Rightarrow W_{\text {I }}^{1}$ مقاومت $=K_{r}-K_{1}$
$\Rightarrow \mathrm{W}_{1}=\frac{1}{r} \times \frac{100}{1000} \times\left(r_{0}\right)^{r}-\frac{1}{r} \times \frac{100}{1000} \times\left(r_{0}\right)^{r}=-r \Delta \mathrm{~J}$

با توجه به قضئ كار و انرثى جنبشى داريم:

$\Rightarrow \mathrm{W}_{\text {چیק }}=\mathrm{mgh}+\frac{1}{r} \mathrm{mv}^{r}$
$\Rightarrow \mathrm{W}_{\text {קo }}=9 \times 10^{r} \times 10 \times 10+\frac{1}{r} \times 9 \times 10^{r} \times(10)^{r}=9 \times 10^{0} \mathrm{~J}$
$P_{ى, ~ ب ن ا ب ر ا ي ن ~ ت و ا ن ~ خ ر و ج ى ~ پ م پ ~ ب ر ا ب ر ~ ا س ت ~ ب ا: ~}^{\text {پا }}$
بنابراين:
$\Rightarrow P_{v د g, g}=r \Delta \cdot W$

سمت راست مىباشد.

بنابراين كار خالصى كه بر روى جسم انجام مىشود برابر است با:
$W_{t}=F_{\text {F }} d \cos \theta \Rightarrow W_{t}=1 \Delta \times r \circ \times \cos \circ^{\circ}=r \circ \circ J$ با توجه به قضيئ كار و انرزى جنبشى داريم:
$W_{t}=K_{r}-\dot{K}_{1} \Rightarrow W_{t}=\frac{1}{r} \mathrm{mv}^{r} \Rightarrow r \circ \circ=\frac{1}{r} \times r \times v_{r}^{r}$
$\Rightarrow v_{r}^{r}=r \circ \circ \Rightarrow v_{r}=1 \circ \sqrt{r} \frac{\mathrm{~m}}{\mathrm{~s}}$
با توجه به قضيه كار و انرثى جنبشى داريم: YV Y
$W_{t}=K_{r}-K_{1} \Rightarrow W_{F}+W_{\text {GRal }}=K_{T}-\dot{K} / 1$
دقت كنيد: كار نيروهاى اتلافى مثل اصطكاك، منفى مىباشد.
$\Rightarrow W_{F}+\left(-r_{0}\right)=\frac{1}{r} \times \mu \times\left(r_{0}\right)^{r} \Rightarrow W_{F}=\lambda r_{0} J$
با توجه به رابطؤ كار انجامشده توسط نيروى ثابت داريه:
$\mathrm{W}_{\mathrm{F}}=\mathrm{Fd} \cos \theta \Rightarrow \lambda \mathrm{T}^{\circ}=\mathrm{F} \times \Delta \times \cos \circ^{\circ} \Rightarrow \mathrm{F}=144 \mathrm{~N}$
با با توجه به قضئ كار و انررث جنبشى داريم:

$\Rightarrow m g h+W_{\text {I }}^{\text {مقاومت }}=\mathrm{K}_{\mathrm{T}}-\mathrm{K}_{\mathrm{I}}$
$\Rightarrow \Lambda \circ \times 1 \circ \times \Delta \circ+W_{1}=\frac{1}{r} \times \Lambda \circ \times \Delta^{r}-\frac{1}{r} \times \Lambda \circ \times r^{r}$

انرثى جنبشى جسم در لحظةٔ برخورد با فنر برابر است با: Yq
$K_{1}=\frac{1}{r} m v_{1}^{r} \Rightarrow K_{1}=\frac{1}{r} \times r \times(1 \circ)^{r}=100 \mathrm{~J}$
هنگًامى حداكثر انرزى در فنر ذخيره مىشود كه جسـمم تمـام انـرزى جنبشــى

 اين صورت حداكثر انرزى پتانسيل كشسانى ذخيرهشده در فنر برابر است با: $U^{e}=\frac{\Lambda_{0}}{100} K_{1}=\frac{\Lambda_{0}}{100} \times 100=\Lambda \circ \mathrm{J}$

و براى به دست آوردن نقطهاى كه انررى جنبشى و پتانسيل گلوله برابـر اسـت (نقطةٔ (ک))، داريه:
$\mathrm{E}_{r}=\mathrm{E}_{1} \Rightarrow \mathrm{~K}_{r}+\mathrm{U}_{r}=\mathrm{K}_{1}+\dot{ष}_{1} \xrightarrow{\mathrm{~K}_{r}=\mathrm{U}_{r}} \mathrm{U}_{r}=\frac{1}{r} \mathrm{mv}^{r}$
$\Rightarrow U_{r}=\frac{1}{r} \mathrm{mv}^{r} \Rightarrow \mathrm{mgh}_{r}=\frac{1}{\varphi} \mathrm{mv}^{r} \Rightarrow \mathrm{~h}_{\mathrm{r}}=\frac{\mathrm{v}^{r}}{\mathrm{r}_{\mathrm{r}}}$
در نتيجه داريم:
$\frac{h_{r}}{h_{1}}=\frac{\frac{v^{r}}{r g}}{\frac{\mathrm{v}^{r}}{r g}}=\frac{1}{r} \Rightarrow \frac{1}{r} \times 100=\% .00$
(I FT توان خروجى بالابر برابر است با:

توان ورودى بالابر برابر است با:
$P_{v د و g, ~}=\frac{W_{v د و ر g 9}}{\Delta t} \Rightarrow P_{v د و ر g}=\frac{10000}{10 \times 90}=\frac{100}{9} \mathrm{~W}$
بنابراين بازده اين بالابر برابر است با:

(

$$
\xrightarrow{\mathrm{K}_{\mathrm{r}}=\mathrm{K}_{\mathrm{I}}} \mathrm{~W}_{\mathrm{N} \boldsymbol{\sim}}-\mathrm{mgh}=。
$$

$W_{\text {W }}^{\text {ش }}=v \Delta \times 1 \circ \times 9=r \Delta \circ \circ \mathrm{~J}$
بنابراين توان خروجى شخص برابر است با:

بنابراين بازده شخص برابر است با:
.
r FF
$W_{t}=K_{T}-\stackrel{\circ}{K_{1}} \Rightarrow W_{F}+\stackrel{\circ}{m g}=K_{T}$
$\Rightarrow F d \cos \circ^{\circ}=\frac{1}{r} \operatorname{mv}_{r}^{r} \Rightarrow r \circ \times 1 / \Delta \times 1=\frac{1}{r} \times \frac{r}{1 \circ} \times v_{r}^{r}$
$\Rightarrow v_{r}^{r}=r \Delta \times r \times \Delta=r \Delta_{0} \Rightarrow v_{r}=\sqrt{r \Delta_{0}}=1 \Delta \sqrt{r} \frac{\mathrm{~m}}{\mathrm{~s}}$
جرم مايع داخل مخزن برابر است با:
$\mathrm{m}=\rho \mathrm{V} \Rightarrow \mathrm{m}=1000 \times \mathrm{f}=9 \times 10^{\mu} \mathrm{kg}$

شيمى | شا

بررسى عبارتها:

- • نسبت مجموع ضرايب فراوردهها به مجموع ضرايب واكنشدهندهها در واكنش برابر است با:
$\frac{r+r+r}{r+r}=r$
- نسبت مجموع ضرايب واكنشدهندهها به مجموع ضرايب فراوردهها در واكنش b برابر است با:
$\frac{r+r+r}{r+r}=1 / V \Delta$

- ضريب Or در هر كدام از واكنشها برابر با با است. Y ST

جرم آب +جرم كربن دى اكسيد = جرم اكسيزن + جرم پرويان (C)
? $\mathrm{g}_{\mu} \mathrm{H}_{\Lambda}=1 / 9 \Delta \Delta \times 10^{r \Delta}$ atom $\times \frac{1 \mathrm{~mol} \mathrm{C}_{\mu} \mathrm{H}_{\Lambda}}{11 \times 9 / \circ \Gamma \times 10^{r \varphi} \text { atom }}$

? $\mathrm{g} \mathrm{CO}_{r}=V / \Delta \mathrm{mol} \times \frac{\mu \mu \mathrm{g} \mathrm{CO}}{r} \frac{\mathrm{~mol} \mathrm{CO}_{r}}{1 .}=r \mu \circ \mathrm{~g} \mathrm{CO}_{r}$
? $\mathrm{g} \mathrm{H}_{Y} \mathrm{O}=9 / 0 \mathrm{O}_{\times 1} 0^{\text {rr }}$ molecule $\mathrm{H}_{Y} \mathrm{O}$
$\times \frac{1 \mathrm{~mol} \mathrm{H}_{r} \mathrm{O}}{9 / 0 \Gamma \times 10^{r r} \text { molecule } \mathrm{H}_{r} \mathrm{O}} \times \frac{1 \wedge \mathrm{~g} \mathrm{H}_{r} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H} \mathrm{H}}=1 \wedge \circ g \mathrm{H}_{r} \mathrm{O}$
? $\mathrm{g} \mathrm{O}_{r}=\left(r r_{\circ}+1 \Lambda_{\circ}\right)-(11 \circ)=r_{\circ} \circ g \mathrm{O}_{r}$
(1) 94 پ) دومين كاز نجيب فراوان لائَ ترويوسفر هواكره ، نئون است.
 (1 94 فقط عبارت اول درست است.

- علاوه بر كازهاى

كازهاى گَلخانهاى هستند.
 - مولكولهاى X مانع از خروج كامل گرماى آزادشده از سطح زمين شده و بـدين ترتيب زمين راگرم مىكنند.

M UV

بررسى عبارتها: - به ساختارهاى لوويس NO و NO ${ }^{\text {M }}$ توجه كنيد: $: \ddot{\mathrm{O}}-\dot{\mathbf{N}}=\ddot{\mathrm{O}} \quad \dot{\mathbf{N}}=\ddot{\mathbf{O}}$

- شمار جفت الكترونهاى نإيوندى مولكول SiBrf برابـر بـا الكترونهاى پيوندى مولكول CS برابر با \uparrow است:
: $\ddot{\mathrm{Br}}$:
$: \ddot{\mathrm{B}} \mathrm{r}-\underset{\mathrm{Si}}{\mathrm{Si}}-\ddot{\square}:$
$\ddot{\mathbf{S}}=\mathbf{C}=\ddot{\mathbf{S}}$
: Br:
- در ساختار SF برخلاف PCl $_{\text {ب }}^{\text {اتم مركزى داراى جفت الكترون نإيوندى است: }}$

- آرايش الكترون نقطهاى اتم كلر به صورت : پييوند كووالانسى تشكيل داده است.

برسى عبارتهاى نادرست:
ب) از واكـنش اغلـب اكسـيدهاى فلـزى بـا آب، بـاز توليــد مىشـود. لزومـاً هــر اكسيدفلزى، يك اكسيد بازى نيست.

ت) با افزايش مقدار كربن دىاكسيد محلول در آب، خاصيت اسيدى آب، افزايش و
(pH
(F D9

1) $\varsigma \mathrm{KI}+\mathrm{NaClO}_{r}+\varphi \mathrm{HCl} \rightarrow \mathrm{NaCl}+\mu \mathrm{I}_{\Gamma}+\varphi \mathrm{KCl}+\mu \mathrm{H}_{\Gamma} \mathrm{O}$
r) $\mathrm{H}_{r}+\mathrm{H}_{r} \mathrm{~S}+\mathrm{CaCO}_{r} \rightarrow \mathrm{CaS}+\mathrm{CO}+\mathrm{rH}_{r} \mathrm{O}$
r) $\mathrm{KCN}+\mathrm{Cl}_{\Gamma}+\Gamma \mathrm{KOH} \rightarrow \mathrm{KOCN}+\mathrm{KKCl}^{2}+\mathrm{H}_{\zeta} \mathrm{O}$

ヶ) $\mathrm{H}_{\zeta} \mathrm{S}+{ }^{\kappa} \mathrm{Cl}_{r}+{ }_{\varphi} \mathrm{H}_{\zeta} \mathrm{O} \rightarrow \mathrm{H}_{\zeta} \mathrm{SO}_{\uparrow}+\wedge \mathrm{HCl}$
ع ع
بررسى عبارتهاى نادرست:

- سوزاندن سوختهاى فسيلى در هوإيماها، حجم انبوهى ${ }^{\text {(}}$ • توليد مىكند. - ردیاى CO حاصل از انرثى الكتريكى بسيار سنگیین است.

معادلئ موازنشدهٔ هر دو واكنش در زير آمده است:
a) $r \mathrm{Al}_{r} \mathrm{O}_{r}+r \mathrm{IF}_{\Delta} \rightarrow r \mathrm{AlF}_{r}+r \mathrm{IF}+r \mathrm{O}_{r}$
b) $r \mathrm{FeS}+r \mathrm{SiO}_{r}+r \mathrm{O}_{r} \rightarrow r \mathrm{FeSiO}_{r}+r \mathrm{SO}_{r}$

٪ 90

براى افزايش بهرهورى در كشاورزى به خاك مىافزايند.
Y 98 عبارتهاى اول و آخر درست هستند.

بررسى عبارتهاى نادرست:

- هنگامى كه پرتوهاى خورشيدى به زمين تابيده مىشود، بخش كــوپكـى از ايـن پرتوها به وسيلءٔ هواكره جذب مىشود.
(Y FV عبارتهاى اول و سوم درست هستند
بررسى عبارتهاى نادرست:
- در معادله واكنش مواد مذاب با نماد (1) نشان داده مىشود.
- هر تغيير شيميايی مىتواند شامل يكى يا چند واكنش شيميايى باشـد كـه هـر يكى از آنها را با يكى معادله نشان مىدهند.
\&1
كيلوگرم ${ }^{\text {CO }}$ مصرف مىكنند:
$? \mathrm{~kg} \mathrm{CO}=r \circ \circ \operatorname{tree} \times \frac{1 r \circ \circ \mathrm{~mol} \mathrm{CO}}{r} 1$ tree $\times 1$ year $\times \frac{1 \text { year }}{1 r \text { month }}$
$\times \frac{\mu \mu \mathrm{gCO}_{r}}{1 \mathrm{~mol} \mathrm{CO}_{r}} \times \frac{1 \mathrm{~kg} \mathrm{CO}}{r} \mathrm{~kg}^{1000 \mathrm{~g} \mathrm{CO}_{r}}=\wedge \wedge \circ \mathrm{kg} \mathrm{CO}$
$? \mathrm{kw} \cdot \mathrm{h}=\wedge \wedge \circ \mathrm{kg} \mathrm{CO}_{\Gamma} \times \frac{\circ \mathrm{v} \mathrm{kw} \cdot \mathrm{h}}{1 \mathrm{~kg} \mathrm{CO}}=я 1 я \mathrm{kw} \cdot \mathrm{h}$

(a) ك

Y Vo V
هر دو عبارت اول و سوم مربوط به گاز گوگرد دىاكسيد (${ }^{\text {د }}$ (SO $)$ است.

