

DriQ.com
كدام است؟ $\frac{\mathbf{a b}}{\mathbf{c}}$
${ }^{f}\left({ }^{(4)}\right.$
$r(r$
r
$1(1$
($9\left(r \quad \frac{r}{r}(r)-\frac{r}{r}(r)-9()\right.$

 $\frac{r v q}{r \circ d}(1$ $\frac{r v q}{\Delta \Delta}(r$ $\frac{r \wedge q}{r \circ D}(r$ $\frac{r \lambda q}{\Delta \Delta}(r$

ه- نمودار تابع f بهصورت شكل زير است. مساحت ناحئ محصور بين نمودار تابع y=-rf(x+1) و محور x

در شكل زير، دو چر خدنده به شعاعهاى r و T سانتىمتر به وسيلهٔ يك زنجير به هم متصل شدهاند. طول زنجير چقدر است؟

$$
\begin{aligned}
& \sqrt{r}+\Delta \pi() \\
& r \sqrt{r}+\frac{\lambda \pi}{r}(r \\
& \sqrt{r}+\frac{19 \pi}{r}(r \\
& r \sqrt{r}+\frac{19 \pi}{r}(r
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi-r}{\omega}() \\
& \frac{r \pi-r}{\omega}(r \\
& \frac{\pi-r}{10}(r \\
& \frac{r \pi-r}{10}(r
\end{aligned}
$$

رياضيات |

$$
\begin{aligned}
& \text { حل ريدنيّ سوزالات اين رنترپّ رادر } \\
& \text {, DriQ.com سشاهره كنير. }
\end{aligned}
$$

> $\uparrow \wedge \pi(\uparrow \quad \Delta \Delta \pi(r \quad \psi \Delta \pi(r) \quad ヶ я \pi()$ 10 q०(4

> ra (r D(1)
$-\frac{r}{V}\left(\varphi \quad-\frac{\varphi}{\Delta}\left(r \quad \frac{F}{\Delta}\left(r \quad-\frac{r}{\Delta}()\right.\right.\right.$

 $\frac{Y V}{r}\left(\varphi \quad \frac{r r}{r}\left(r \quad \frac{r i}{r}\left(r \quad \frac{i V}{r}()\right.\right.\right.$ ا－ا－هرگاه $\frac{\sqrt{r}}{r}(4 \quad \sqrt{r}(r) \quad 1(r \quad$ صe $)$
 $\sqrt{\pi^{r}+r}\left(\varphi \quad \frac{1}{r} \sqrt{\pi^{r}+19}\left(r \quad \frac{\pi}{r}+r(r) \pi+r()\right.\right.$

（Y）سه نقطه「）يك نقطه Y（Y）دو نقطه
（1）صفر

$$
\frac{r}{\pi}(r
$$

$$
\frac{\varphi}{r \pi}(\psi
$$

$-f(1$
$-r / a(r$
$-\Delta(r$
$-\Delta / \Delta(\varphi$

نموه - نمودارهاى دو تابع
(Y) بیشمار
$r(r$
$r(r$
1 (1

DriQ.com

زبـيستشتناسى

شده است. چند مورد در ارتباط با اين توده بدخيم نادرست است؟ الف) اندازء اين توده مىتواند كوچكتر از نوع خوشخيم بوده و علت اصلى ايجاد آن، بعضى تغييرات در مادهٔ زنتيكى ياختههاى بدن فرد است. ب) در صورت بروز نوعى بيمارى خودايمنى در جزاير لانترهانس بدن فرد، احتمال استقرار و رشد توده در نواحى ديگر بدن كاهش پيدا مىكند.

 f(${ }^{+}$ $r(r$
$r(r$
$1(1$
كr كدام گزينه، عبارت زير را به طور مناسب تكميل مىكند؟
» دنبال برخورد لنفوسيت B به آنتىثن، در هر مرحلهاى از تقسيم كه، به طور معمول دور از انتظار است."
() افزايش فشردگى كروموزومها آغاز مىشود ـ تجزئه كامل پوشش هسته و شبكئ آندوپيلاسمى
(Y) غشاى هسته در اطراف كروموزومهاى دوكروماتيدى تشكيل مىشود ـكوتاه شدن كروموزومها ؟) كروماتيدهاى خواهرى از يكديگر دور مى شوند ـ مشاهدهٔ رشتههاى دوكى متصل به سانترومر كروموزومها

rץ- كدام گزينه در ارتباط با فرايند نشان دادهشده در شكل زير به درستى بيان شده است؟

() نوعى مرگى تصادفى ياختهاى بوده كه با حذف ياختـههاى پيـر و آســيبديده از تشـكيل تومـور بــدخيم
جلوگيرى مىكند.

Y براساس فرايندهاى برنامهريزىشده منجر به حذف پردههاى ميـانى انگَشـتان برخـى پرنــدگان در دوران بلوغ مىشود.
ケ) نوعى بافتمردگى بوده كه منجر به افزايش آزاد شدن محتويات ريزكيسههاى برخى بيكانهخوارهاى بافتى مىشود. ¢ ¢) مشابه اين حالت در هنگام قرارگيرى طولانىمدت انسان در معرض اشعأ فرابنفش خورشيد روى مىدهد.

الف) در روش پرتودرمانى همانند روش شيمىدرمانى، در شرايطى امكان تغيير در ميزان ترشح هورمون اريتروپويتين وجود دارد.

 د) در روش پرتودرمانى برخلاف روش شيمىدرمانى به دنبال آسيب برخى ياختهها، علائمى مانند كاهش ترشح دوییامين در اعتياد مشاهده مىشود.
 كهـ كدام گزينه براى تكميل عبارت زير مناسب است؟
 (1) دارد، در پی ايجاد ساختارهاى حلقدمانند در غشاى باكترى، اين جاندار به درون ياختئ ايجادشدهٔ حاصل از تقسيم مونوسيت وارد شود. Y) ندارد، بيش از يكى عامل بيمارىزا در ريزكيسههاى سيتوپالاسمى حاصل از فاكوسيتوز در ياختههاى واكنش سريع دستگاه ايمنى مشاهده شود.

 الف) نوعى لنفوسيت كه تركيبات توليدشده در آن باعث فعال شدن پروتئين مكمل مىشود، قادر به توليــد ياختــهـهايى بــا توانـايى انجـام تقسيم ياختهاى است. ب) نوعى لنفوسيت كه در غدهُ تيموس بالغ مىشود با برونرانى ريزكيسههاى سيتوپپاسمى حاوى پرفورين، سبب القاى مرگَ برنامهريزىشده در ياختئ هدف مىشود. ج) نوعى لنفوسيت كه فقط در دفاع غيراختصاصى فعاليت دارد، ريزكيسـهههاى حــاوى آنــزيم را پـسس از خــروج پروتئينهــاى پرفـورين از سيتوپِلاسم با غشاى خود ادغام مىكند. د) نوعى لنفوسيت كه عملكرد آن در بيمارى ايدز دحار اختلال مى شـود، مى تواند منجر به مقاومسازى ياختههاى سالم مجاور خــود در برابــر نوعى عامل بيمارىزا شود.
 . .

 ٪) مادهاى را ترشح مىكند كه مىتواند توسط بازوفيل نيز ترشح شده و حساسيت ايجاد كند ـ باعث افزايش خون در برخى رگَهاى بدن شود. ¢ (از از تقسيم مونوسيت ايجاد مىشود - در بين سطحىترين ياختههاى پوست بدن ديده شود.
د^ در ارتباط با مراحل چرخئ ياختهاى و انواع كروموزومهاى در جانداران چند مورد صحيح است؟
الف) مرحلهاى كه توليد پروتئينهاى دوك تقسيه توسط نقطةٔ وارسى بررسى مى شود، از ساير مراحل اينترفاز كوتاهتر بوده و توليــد عوامــل مورد نياز براى تقسيم ياخته در آن شروع مى شود. ب) دو برابر شدن ميزان كروموزومها در مرحلهاى از اينترفاز رخ خـى دوهد كه فاقد نقطهُ وارسى اصلى است. ج) در انسان و ساير جانداران، كروموزومهاى جنسى براى تعيين جنسيت وجود دارند كه هيجتاه شبيه به هم نيستند.

\qquad پاسخ ايمنى ثانويه. \qquad » "در ايمنى اختصاصى، پاسخ ايمنى اوليه
() همانند ـ سرعت پاسخدهى لنفوسيتها از خط دوم كمتر است. (Y نسبت به _كاهش تعداد ياختههاى ايمنى بعد از رفع آسيب، زودتر اتفاق مى افتد.
T ¢ ¢) همانند - توليد پروتئينهايى عليه غشاى ياختئ آلوده براى ايجاد منفذ امكانپذير است.

「 「
»لنفوسيتهاى B مىتوانند در اندامى كه كيرندههاى سطحى خود را توليد مىكنند، فعاليت فاگوسيتها را تشديد نمايند．«

 r
¢

مىباشد؛ درست است؟
الف）سازش عوامل بيگًانه نسبت به ترشحات پوست بدن همواره موجب بيمارىزايى مى شود．

 ${ }^{f}\left({ }^{(4}\right.$ $r(r$
$r(r$ 1 （1
rr－كدام گزينه، عبارت زير را به نادرستى تكميل مىكند؟ «．
 （）به دنبال تكثير شدن، ياختهاى توليد مىكند كه توانايى ترشح پروتئين دفاعى اينترفرون نوع يك را را دارد．
「

rrـ كدام گزينه، عبارت زير را به نادرستى تكميل مىكند؟

$$
\begin{aligned}
& \text { 》هر نوع گويحءٔ سفيد در بدن انسان كه مى تواند " }
\end{aligned}
$$

> كـدام كزينه، عبارت زير را به درستى تكميل مىكند؟
> () درونى - نوعى بافت پيوندى دارد كه مادة زمينهاى اندك و رشتههاى كلازن فراوان دارد.
؟

$$
\begin{aligned}
& \text { ". ياختههاى كشندهٔ طبيعى، }
\end{aligned}
$$

Y
درشتخوارها، نميتوانند ．．．．．．．．．．．．．
ياختههاى دارينهاى ．
rq
¢ ¢）برخلاف ـ با عملكرد خود باعث افزايش ميزان ذخاير آهن در اندام سازندئ اريترويويتين شوند．
（rr
（）در پی ايجاد منافذى در غشاى ميكروب، فعاليت درشتخوارها افزايش مى يابد．
Y）تعدادى از نوتروفيلهاى خون پس از تراگذرى به درشتخوارها تبديل مى آشوند．〒）هر مادهاى كه در موضع آسيبديده آزاد مىشود، سبب گشادى رگیهاى خونى مىشود． ٪）بعضى مواد آزادشده از ياختههاى محل آسيبديده باعث تراگذرى نوتروفيلها و ماكروفازها مىشود．

（）خوشخيم برخلاف ـ بدخيم ـ آسيب به بافتهاى مجاور ديده نمىشود．
（Y）خوشخيم همانند－بدخيم－ياختههايى با هستأ راندهشده به گوشه، به صورت كنترلنشده تقسيم مى شوند．「٪）بدخيم برخلاف ـ خوشخيم－ياختهها همراه با جريان لنف به نواحى ديگر بدن میروند． f（ ）بدخيم همانند－خوشخيم－مىتوان تقسيم كنترلنشده در ياختهها را مشاهده كرد．
rq－ra
\qquad ＂هر ياختءٔ بيگَانهخوار دستگَاه ايمنى انسان كه
（）حاصل تغيير شكل نوعى گويحئ سفيد با هستؤ تكى لوبيايى است، قسمتهايى از ميكروب را نيز به گَره لنفى انتقال مىدهد． Y（Y）در بخشهايى از بدن كه با محيط بيرون در ارتباط است به فراوانى يافت مىشود، تركيبات گشادكنندهٔ عروق ترشح مىكند． ץ）توانايی ديایدز را نيز دارد، به علت عدم حمل مواد دفاعى، سريع و چابكى است و به نيروى واكنش سريع تشبيه مىشود．
 در يك فرد سالم، هر ياختهاى كه مى تواند اينترفرون نوع ．．．．．．．．．．．．．．را ترشح كند، به طور حتم ．．．．．．．．．．．．．． （）يك ـ نمىتواند به طور اختصاصى عوامل بيگانه را شناسايى كند． （Y）دو－مى تواند با تغيير شكل هستؤ ترد خود از نوعى بافت پيوندى خارج شود． Y（Y）يك ـ توانايى ترشح پروتئينهايى مشابه گيرندههايش را دارد． ¢ همهٔ لنفوسيتهاى موجود در پيكر انسانى سالم،
（）مىتوانند نوعى تركيب پِلى پیتيدى در مقابله با نوعى عامل بيمارىزا ترشح كنند． （Y）〒 「 در غدهاى كه مقابل محل دو شاخه شدن ناى و پشت استخوان جناغ قرار دارد، بالغ شدهاند． （Y）به كمك نوع خاصى از لنفوسيتها كه مورد حملئ ويروس HIV قرار مىگيرد، فعاليت مىكنند．
 الف）پروفاز ـ فاصلهُ جفتسانتريولهاى موجود در ياخته از يكديگر ـ طول ساختارهاى تشكيلدهندهٔ مادهٔ وراثتى ب）پرومتافاز ـ توليد رشتههاى تشكيلدهندهٔ سانتر يولها ـ ميزان گستردگى شبكهٔ آندوپلاسمى ج）آنافاز ـ تعداد كروموزومهاى موجود در ياخته＿طول برخى رشتههاى تشكيلدههندهٔ ساختار دوك تقسيم د）تلوفاز ـ تعداد ساختارهاى دوغشايى موجود درون ياخته ـ ميزان فشردگى كروموزومها f（f） $r(\Gamma$ r（r
（）دارای زوائد سيتوپِاسمى در سطح خود هستند، در تمايز لنفوسيتهاى دفاع اختصاصى نقش دارند． （Y）باعث از بين بردن ياختههاى مردهٔ بافتها مى（Y） ץ）دارای توانايى عبور از ديوارءٔ مويرگَها هستند، در سيتوپالاسم خود هستهاى چندقسمتى با دانههاى روشن ريز دارند． ¢）باعث ترشح هيستامين در فرايند التهاب مىشوند، در افزايش جريان خون موضع آسيب و حضور بيشتر گويحههاى سفيد نقش دارند．

$$
\begin{aligned}
& \text { كدام گزينه براى تكميل عبارت زير مناسب است؟ -FF }
\end{aligned}
$$

〒
د) آزمايش خون: روشى كمكکننده براى تشخيص سرطان با تركيبى از روشهاى تشاى تشخيصى ديگر
$r(r$
r (r
1 (1)

DriQ.com

 داده به طورىكه شعاع سطح مقطع آن هץ درصد كاهش يابد، مقاومت الكتريكى سيم در اين حالت تقريباً چچند درصد و چگگونه تغيير كرده است؟

 مساوى هستند. اگر مقاومت ويزءٔ آلومينيم 100 درصد بيشتر از مقاومت ويرئ مس باشد، جرم سيم مسى چند برابر جرم سيم آلومينيمى است؟ $\frac{r_{0}}{r V}(r) \frac{Y_{0}}{r_{V}}\left(r \quad \frac{T V}{r_{0}}\left(r \quad \frac{r V}{Y_{0}}()\right.\right.$ - FA
 درصد افزايش و شعاع سطح مقطع آن حدود ه د درصد كاهش می می يابد. ب) مقاومت ويثرٔ يكى ماده به ساختار اتمى و دمای آن آن بستگى دارد دارد.

 جريان قرار دهد.

> ¢ ¢) هيجّكدام

1 (
r (r
f(1)

-هـه - نمودار شكل (1)، اختلاف پتانسيل الكتريكى دو سر باترى مدار شكل (Y) برحسب شدت جريــان عبـورى از آن را نشــان مىدهــد. مقــدار

(1)

(r) مقاومت R در نقطؤ B چند برابر مقدار مقاومت R در نقطئ A است؟

$$
\begin{aligned}
& r() \\
& 10(r \\
& \frac{1}{10}(r \\
& \frac{1}{r}(r
\end{aligned}
$$

يك باترى در اختيار داريم كه به مدار الكتر يكى متصل نيست. اختلاف پتانسيل الكتر يكى دو سر اين باترى \& ولت است. اكر يكـ مقاومـت خارجى معادل داخلى اين باترى چند برابر مقاومت خارجى است؟

$$
\frac{\mu r}{r}\left(\mu \quad \frac { r } { \mu r } \left(r \quad \frac{1}{\mu r}(r) \quad r \mu()\right.\right.
$$

- در مدار شكل زير، افت پتانسيل الكتريكى باترى، -ar

مقاومت درونى باترى است.)

هr- نمودار نيروى محركئ باترى (ع) برحسب مقاومت خارجى مدار (R) در كدام كَزينه به درستى آمده است؟

 مقاومت درونى باترى به مقاومت خارجى مدار در كدام گَز ينه به درستى آمده است؟

باز است، 9 ولت كمتر است. مقاومت درونى باترى چند اهـ اهم است؟ (ولتسنج را آرمانى در نظر بگگيريد.)

- دV

ولتسنج عدد صفر را نشان دهد، آمیرسنج چه عددى را برحسب آمیر نشان خواهد داد؟

نمودار اختلاف پتانسيل الكتريكى دو سر باترى در مدار شكل زير برحسب جريان خروجى از آن، مطابق شكل زير است. در مـدتزمان ه/ه - ها دقيقه چه تعداد بار الكتريكى از يكى سطح مقطع مشخص اين مدار عبور مىكند؟ (e=1/9×10

(1)

(Y)
$9 / 4 V \Delta \times 10^{19}(1$
Q/rva×10 $14(r$
$0 / 9 T \Delta \times 10^{\mu \circ}(\mu$
$0 / g T \Delta \times 10^{r 1}(4$

 $910 \circ(4$
rVro(r
$910(\mathrm{r}$
rrr(1

 استفاده كنيم و توان هر كدام از اين لامپها هq درصد كمتر از لامپهاى حبابى باشد، در يكى سال چند تومان در بهاى بــرق مصـرفى يــــ

1-9- نمودار توان خروجى برحسب شدت جريان كَرنده از يك باترى، مطابق شكل زير است. نمودار اختلاف پتانسيل الكتريكى دو سر اين باترى
برحسب شدت جريان عبورى از آن در كدام مَزينه به درستى آمده است؟

-

و R R
ra(1)
rrer
ir (r
$11(4$
r
 الكتر يكى دو سر اين مقاومت FF ولت مى شود. در اين حالت، توان مصرفى باترى چند وات وات است؟

درصد و چگَونه تغيير مىكند؟

> VV () ـ افزايش
(Y (Y
(_ VV (Y)

چند برابر توان مصرفى باترى است؟
r/a()
r/D(r
$\frac{r}{a}(r$

צฯ- در مدار زير، با بستن كليد K، اختلاف پتانسيل الكتريكى دو سر مقاومت ه اهمى چگَونه تغيير مىكند؟

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

§^- در مدار شكل زير، اتر جريان گَذرنده از مقاومت R برابر با

$$
\begin{aligned}
& \frac{f}{11}() \\
& \frac{q}{1 V}(r \\
& \frac{110}{1 V}(r \\
& \frac{c_{0}}{1 V}(r
\end{aligned}
$$

آمیر را نشان خواهد داد؟
f(f)
-Vo

ir(1)
$11(r$
ro (r
rN(f)

DriQ.com

r
()) كاهش مى يابد، ثابت مى ماند. r) ثابت مى ماند، كاهش مى يابد.
 زيتون از دماى

$$
q \wedge r, \circ / \& V(f
$$

l|r|, o/fv (r

$$
9 \wedge r, \circ / \Delta r(r
$$

l|r|, o/ar (

- اگر A و B با جرم، سطح و دماى يكسان Y(F r(r) r(r) (1)

چֶه تعداد از مطالب زير درباره تجربهٔ خوردن شير گرم در يك روز سرد زمستانى درست است؟ -VF

 - بخش عمدهٔ انرزى موجود در شير هنگًام فرايند گوارش و سوختوساز به بدن مىرسد. - در فرايند گوارش و سوختوساز شير f (F
$r(r$
$r(r$
1 (1
كداميك از مطالب زير نادرست است؟ -V -
() همؤ موارد پپيرامون ما در دما و فشار اتاق، آنتالپیى معينى دارند.

بر مول باشد. مجموع آنتاليىهاى پيوند در A(g) چند كيلوزول بر مول است؟

9人9。(1)
vara (r
9910 (r
(A) vrad (F

Fl/ralr rf/la(r rV/ga (r ra/ra()
-VA

$$
\begin{aligned}
\mathrm{IF}(\mathrm{~g}) & \rightarrow \frac{1}{r} I_{r}(\mathrm{~g})+\frac{1}{r} \mathrm{~F}_{r}(\mathrm{~g}) \\
\mathrm{CO}(\mathrm{~g}) & \rightarrow \mathrm{C}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{f} \mathrm{CH}_{\mathrm{f}}(\mathrm{~g}) & \rightarrow \frac{1}{f} \mathrm{C}(\mathrm{~s})+\mathrm{H}(\mathrm{~g}) \bullet \\
\mathrm{H}_{r} \mathrm{O}(\mathrm{~g}) & \rightarrow r \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \cdot
\end{aligned}
$$

Y (
$r_{(}$
$r(r$
1 (1
 افزايش مىدهد و Δ واكنش ترميت چند كيلوزول است؟ (Al =
$\mathrm{rAl}(\mathrm{s})+\mathrm{Fe}_{\Gamma} \mathrm{O}_{Y}(\mathrm{~s}) \rightarrow \mathrm{Al}_{\Gamma} \mathrm{O}_{\Gamma}(\mathrm{s})+\mathrm{YFe}(\mathrm{l})$

$$
-\lambda r, V / r(Y \quad-1 \circ V \Delta, V / M(r \quad-\lambda r r, \Delta / \circ \wedge(r \quad-1 \circ V \Delta, \Delta / \circ \wedge()
$$

－ی。

－روغن و چربى از جمله تركيبهاى داراى كربن هستند كه به دليل تفاوت در ساختار، رفتارهاى فيزيكى و شيميايى متفاوتى دارند． －به طور كلى روغن در مقايسه با چربى واكنشپپیی بيشترى دارد．
－چربى در مقايسه با روغن، نقطهُ ذوب بالاترى دارد．
－در ساختار مولكولهاى روغن برخلاف مولكولهاى چربى، يکى یا چند پیيوند دوگانه وجود دارد．
$\mu_{(} \mu$
$r(r$
1 （1

－با انجام اين فرايند، انرزى از سامانه به محيط منتقل مىشود．
－نمودار واكنش سوختن هيدروثن مشابه نمودار داده شده است． －محتواى انرزى و پايدارى مولكول آب از هيدروزن پراكسيد كمتر است． －در اين واكنش علامت هر كدام از كميتهاى $\Delta \theta$ ，
rer

1 （）

پيوند	$\mathbf{C}=0$	$\mathbf{C} \equiv \mathbf{O}$	$\mathbf{N} \equiv \mathbf{N}$	$\mathbf{N}=\mathbf{0}$
$\Delta \mathbf{H}\left(\mathrm{kJ} . \mathrm{mol}^{-1}\right)$	人0．	$1 . \mathrm{V}$ 。	940	$s \circ V$

$119(\%$
$99(\%$
$109(Y$
vq（1

（ 4
r

泣 ، $\Delta V / \Delta(1$
 معادل 000اكيلوزول گرما توليد شود، كدام گزينه درست است؟（آنتاليى سوختن يك مول گرافيت برابر ه／／

$$
a=r_{0} / \Delta, a>b\left(r \quad a=r_{0} / \Delta, b>a\left(r \quad a=r_{0} / \mu_{\Delta}, a>b\left(r \quad a=r_{0} / r a, b>a()\right.\right.\right.
$$

ه－
باشد．كدام مورد（ها）مىتواند علت تفاوت گرماى دو واكنش را توجيه كند؟（دما و فشار دو واكنش با هم برابر است．）
آ）نوع واكنشدهندهها «ت»،《پ»،《ب»،«آ»（

《پ»،《ا»（
《پ»،《ب»،«آ»（
《ب»،《ا»（1
． \qquad ． \qquad －＾я
a）$\varepsilon \mathrm{CO}_{r}(\mathrm{~g})+\varepsilon \mathrm{H}_{r} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{\varphi} \mathrm{H}_{1 r} \mathrm{O}_{\varepsilon}(\mathrm{s})+\varepsilon \mathrm{O}_{r}(\mathrm{~g})$
b） $\mathrm{N}_{r} \mathrm{O}_{\mathrm{F}}(\mathrm{g}) \rightarrow \mathrm{KNO}_{r}(\mathrm{~g})$
c）$C(s$, （الماس）$)$
d） $\mathrm{HO}_{\mu}(\mathrm{g}) \rightarrow \mathrm{HO}_{\mu}(\mathrm{g})$
a برخلاف، c（ ،
b همانند، d（\％
d a（Y
c همانند، b（1
－انجام يك واكنش شيميايى نشانهاى از تغيير در شيؤ اتصال اتمها
－انجام فرايندهاى فيزيكى و شيميايى منجر به تغيير محتواى انرزى مواد مى انیود．
－گرماى توليدشده يا مصرفشده در واكنشهاى شيميايى قابل اندازهگيرى است．
－داد و ستد انرزى در واكنشها ها به طور عمده به شكل تَرما ظاهر میش

＾＾＾ $\mathrm{C}-\mathrm{Br}$ • $\mathrm{H}-\mathrm{Br}$ • $\mathrm{Br}-\mathrm{Br}$ 。 $\mathbf{O}=\mathbf{O} \cdot \mathrm{C}-\mathrm{H} \bullet \quad \mathrm{C} \equiv \mathbf{O}$ 。

1 （f

F（）
199－آنتالپی يا ميانگين آنتالبى كداميكى از پيوندهاى زير بيشتر از سه پيوند ديگر است؟

－9。
－شمار گروههاى CH
－شمار اتمهاى هيدروثن آن، دو برابر شمار اتمهاى كربن است．
－يكى از مواد آلى موجود در ميخكى است．
－شمار جفت الكترونهاى ناييوندى آن، دو برابی مرابر شمار اتمهاى اكسيزن است．
${ }^{4}\left({ }^{4}\right.$
r（
$r(r$
1 （1
（91－يكى مول از سادهترين آلدهيد و يك مول از سادهترين كتون براى سوختن كامل به ترتيب به a و b مول اكسيزن نياز دارند．كداميكى از روابط
زير درست است؟

－يكى از مواد آلى موجود در دارحين است است
－كروه عاملى آن از سه اتم تشكيل شده است

f（ ${ }^{\text {r }}$
$r(r$
$r(r$
1 （1）
－－－ هيدرورزنى وجود دارد؟
（
（r）كشنيز
（）رازيانه

－مقدار اكسيزن مصرفى براى سوختن كامل يكى مول از آن ها با با هم برابر است

－اگر تركيب A ساختار حلقوى داشته باشد، تركيب B نيز داراى حلقه است．
－اگر تمامى پيوندهاى A يگَانه باشد، تركيب B فاقد پيوندهاى دوكانه و سهگًانه است．
$r(r$
r（r
1 （）

سانتىمتر باشد، عمق رود حدود چند متر خواهد بود؟
－اگَر مخروط افت چاه به صورت شكل زير باشد، كدام گزينه صحيح است؟

（Y）سيلت

ش）شن
（Y）ماسه
（1）رس
افزايش مىیيابد． \qquad 99－با افزايش حجم بارش و نفوذپپیرى خاك،
 1000－براى تشكيل فا سانتىمتر خاك حدود چند سال زمان نياز است؟ $1000\left(Y \quad 1900\left(Y \quad 1 Y_{0} 0(Y \quad 900(1)\right.\right.$

براى پیسازهها مناسب نمىباشد． \qquad ． 101－شيل يك نوع سنگَ
¢ ¢ رسوبى ـ انحلال پذيرى
r) دگرگونى _ انحلال پذيرى
「 (ץ) رسوبى - تورق
() دگرگونى - تورق

「 \uparrow－ترتيب مقاومت سنگَها در كدام گزينه صحيح بيان شده است؟

－lof

گَفته مىشود．有
 （l）نيروى داخل سنگ كه موجب تغيير شكل آن مىشود
（ ）سنگگهاى مقاوم در ״یسازهها
ケ）چال هاى باریی و عميق جهت استخراج نفت و آب

$$
\begin{aligned}
& \text { () تنش برشى و سريع } \\
& \text { 「 } \\
& \text { 「) تنش برشى و آرام } \\
& \text { ¢ (}
\end{aligned}
$$

「 دفتر چه شماره

دوره دوم متوسطه

شماره داوطلبى:	نامן و نام خانوادگى:
مدت پاسخكَّيى:	تعداد سؤال: 1 ¢

عناوين مواد امتحانى آزمون گروه آزمايشى علوم تجربى، تعداد سؤالات و مدت پاسخگويى

مدت پاسخگويى	شمارهسؤال		تعدادسؤال	مـواد امتـحانى	رديف
	تا	از			
r.	r.	1	r.	rer	1
¢ ¢ دقيقه	40	Y	ros	زيستشناسى	r
-	v.	14	ros	فيزيك r	r
¢ ¢ دقيقه	90	VI	ros	\%	F
-	$1 \cdot 0$	99	1.	زمين شناسى	0

آَمووهاكاكسراسز C1

وير اســاران علمى	طـراحان	دروس
مريم ولىعابادينى - مينا مقدسى رِيريا ابريشمّار - مينا نظرى	محمدرضا ميرجليلى	رياضيات
ابراهيم زرميوش محملناناز فلاحى		زيستشناسى
مرواريد شاهحسينى	كامبيز انضلى	فيزيك
ايمان زارعى	مريم تمدنى - ميلاد عزيزى	شيمى
بهاره سليمى - عطيه خادمى	حسين زارعزاده	زمينشناسى

ريـاضيـات
سمت چپ ببريه:

$\Rightarrow S=\frac{r \times \varepsilon}{r}=r$
Y \&
عمود است. لذا شكل زير را در نظر مىگيريم:

. $=r \times(\mathrm{AB}+\overparen{\mathrm{AM}}+\overparen{\mathrm{BN}})$

$$
\begin{aligned}
& |\overparen{\mathrm{AM}}|=r \theta=r \times \frac{\pi}{r}=\frac{r \pi}{r} \\
& |\overparen{\mathrm{BN}}|=r^{\prime} \theta^{\prime}=r \times \frac{r \pi}{r}=r \pi
\end{aligned}
$$

براى محاسبءٔ AB، شكل زير را داريم:

$\mathrm{OEO}^{\prime}: \tan 90^{\circ}=\frac{\mathrm{OE}}{\mathrm{O}^{\prime} \mathrm{E}} \Rightarrow \sqrt{r}=\frac{\mathrm{OE}}{1} \Rightarrow \mathrm{OE}=\mathrm{AB}=\sqrt{r}$ بنابراين در نهايت داريم:

$$
\begin{aligned}
& \text {, } \quad=r\left(\sqrt{r}+\frac{r \pi}{r}+r \pi\right)=r \sqrt{r}+\frac{19 \pi}{r} \\
& \text { شكل ز }
\end{aligned}
$$

(C g $=\{r, \Delta\}$ مى تعريف $\mathrm{F}=\frac{\mathrm{rf}}{\mathrm{f}-\mathrm{r}}$

داشته باشند، چس:
$a=\Delta$
$g(r)=c \Rightarrow \frac{r f(r)}{f(r)-r}=c \Rightarrow \frac{r \times \Delta}{\Delta-r}=c \Rightarrow c=0 \quad$ از طرفى داريمه:

 $\left\{\begin{array}{l}f(\circ)-r=\circ \Rightarrow b-r=\circ \Rightarrow b=r \\ f(r)-r=\circ \Rightarrow r-r=\circ(\checkmark)\end{array} \Rightarrow \frac{a b}{c}=\frac{\Delta \times r}{\Delta}=r\right.$
$1 r$
$\left\{\begin{array}{l}f(x)=x^{r}-r x+k \Rightarrow f(-r)=q+\varepsilon+k=1 \Delta+k \\ g(x)=\frac{r}{x+r} \Rightarrow g(-r)=\frac{r}{-r+r}=-r\end{array}\right.$
$(f-g)(-r)=f(-r)-g(-r)=(1 \Delta+k)-(-r)=1 \circ \Rightarrow k=-\wedge$
$\Rightarrow f(x)=x^{r}-r x-\lambda \Rightarrow f(r)=r-r-\wedge=-\lambda$
$g(r)=\frac{r}{r+r}=\frac{r}{r}$
$\Rightarrow(\mathrm{f} . \mathrm{g})(\Upsilon)=\mathrm{f}(\Upsilon) \times \mathrm{g}(\Upsilon)=(-\wedge) \times\left(\frac{r}{\varphi}\right)=-\varsigma$
مى r r r
$D_{\frac{g}{f}}=D_{g} \cap D_{f}-\{x \mid f(x)=\circ\}$
$\left\{\begin{array}{l}D_{g}: x+r \geq_{0} \Rightarrow x \geq-r \\ D_{f}: v-x>0 \Rightarrow x<v\end{array} \Rightarrow D_{f} \cap D_{g}=[-r, v)\right.$
$\mathrm{f}(\mathrm{x})=\circ \Rightarrow \mathrm{x}^{r}-\mathrm{r} \mathrm{x}=\circ \Rightarrow \mathrm{x}=0, \mathrm{r}$
$\Rightarrow D_{\frac{g}{f}}=[-r, v)-\{0, r\}$
پس دامنئ تابع (Y F F ابتدا ضابطةٔ توابع f , f ر امینويسيم:
$\left\{\begin{array}{l}(-\omega,-1) \\ (\circ, r)\end{array} \Rightarrow m=\frac{r+1}{\circ+\omega}=\frac{r}{\omega} \xrightarrow{f \text { faca }} y-r=\frac{r}{\partial}(x-\circ)\right.$
$\Rightarrow \mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{\mathrm{F}}{\boldsymbol{a}} \mathrm{x}+r$

$\Rightarrow \mathrm{y}=\mathrm{g}(\mathrm{x})=-\frac{f}{9} \mathrm{x}+\mathrm{r}$
$\Rightarrow\left\{\begin{array}{l}f(r)=\frac{r}{\Delta} \times r+r=\frac{19+1 \Delta}{\Delta}=\frac{r 1}{\Delta} \\ g(r)=-\frac{r}{q} \times r+r=\frac{-1 \varphi+r v}{q}=\frac{11}{9}\end{array}\right.$
$\Rightarrow\left(\frac{f}{g}\right)(\psi)=\frac{f(r)}{g(r)}=\frac{\frac{r 1}{\Delta}}{\frac{11}{q}}=\frac{r 1 \times q}{\Delta \times 11}=\frac{r v q}{\Delta \Delta}$

لذا كسر دادهشده بهصورت زير ساده مىشود: (در محاسبئ سينوس و كسينوس
از مضارب زوج π صرفنظر مىشود):
$=\frac{\sin \left(\frac{\pi}{r}-\alpha\right)+\cos \left(\alpha-\frac{\pi}{r}\right)}{\sin \left(-\frac{\pi}{r}-\alpha\right)-r \sin (\alpha-\pi)}=\frac{\cos \alpha+\sin \alpha}{-\cos \alpha+r \sin \alpha}$
$\xlongequal[\div \cos \alpha]{\div \cos \alpha} \frac{1+\tan \alpha}{-1+r \tan \alpha}=\frac{1+k}{-1+r k}=r \Rightarrow 1+k=-r+\varepsilon k$
$\Rightarrow r=\Delta k \Rightarrow k=\frac{r}{\Delta}$
$q \cos ^{r} x+r \sin x(\cos x)=1+\sin ^{r} x$
$\xrightarrow{\div \cos ^{r} x} q+r \tan x=\frac{1}{\cos ^{r} x}+\tan ^{r} x$
$\frac{1}{r}=1+\tan ^{r} x$
$\cos ^{r} x \longrightarrow q+r \tan x=1+\tan ^{r} x+\tan ^{r} x$
$\Rightarrow r \tan ^{r} x-r \tan x-\Delta=\circ \Rightarrow(\tan x+1)(r \tan x-\Delta)=\circ$
$\Rightarrow\left\{\begin{array}{l}\tan x=-1 \\ \tan x=\frac{\Delta}{r}\end{array}\right.$
و اما حاصل عبارت خواستهشده:
$\tan (\Delta \pi-x) \cot \left(\frac{\Delta \pi}{r}+x\right)=A \Rightarrow A=\tan (-x)(-\tan x)$
$\Rightarrow \mathrm{A}=\tan ^{r} \mathrm{x} \xrightarrow{(* *),(*)}\left\{\begin{array}{l}\mathrm{A}=1 \\ \mathrm{~A}=\frac{r \mathrm{D}}{r}\end{array}\right.$
r
$\left\{\begin{array}{l}\alpha+\beta=\frac{\pi}{r} \Rightarrow \sin \alpha=\cos \beta \\ \alpha+\beta=\pi \Rightarrow\left\{\begin{array}{l}\sin \alpha=\sin \beta \\ \tan \alpha=-\tan \beta\end{array}\right.\end{array}\right.$
لذا داريه:
$\frac{\pi}{\partial}+\frac{r \pi}{1 \circ}=\frac{\Delta \pi}{1 \circ}=\frac{\pi}{r} \Rightarrow \sin \left(\frac{\pi}{\partial}\right)=\cos \left(\frac{r \pi}{1 \circ}\right)$
$\frac{r \pi}{11}+\frac{\wedge \pi}{11}=\pi \Rightarrow \sin \frac{r \pi}{11}=\sin \frac{\wedge \pi}{11}$
$\frac{\pi}{\Lambda}+\frac{\vee \pi}{\Lambda}=\pi \Rightarrow \tan \frac{\pi}{\Lambda}=-\tan \frac{\vee \pi}{\Lambda}$
بنابراين حاصل كسر دادهشده برابر است با:
. $=\frac{\sin \left(\frac{\pi}{\partial}\right)}{\sin \left(\frac{\pi}{Q}\right)}+\frac{\sin \frac{r \pi}{11}+\tan \frac{V \pi}{\Lambda}}{\tan \frac{V \pi}{\Lambda}+\sin \frac{r \pi}{11}}=1+1=r$
(1F
$\sin (\Delta \alpha+\mu \beta)=\sin (\alpha+\varphi \alpha+\varphi \beta)=\sin (\alpha+\varphi(\alpha+\beta))$
$=\sin \left(\alpha+r \times \frac{11 \pi}{\Lambda}\right)=\sin \left(\frac{11 \pi}{r}+\alpha\right)=\sin \left(\frac{\wedge \pi}{r}+\frac{r \pi}{r}+\alpha\right)$
$=\sin \left(\frac{r \pi}{r}+\alpha\right)=-\cos \alpha \Rightarrow \cos \alpha=\frac{r}{r \sqrt{r}} \Rightarrow \cos ^{r} \alpha=\frac{r}{r v}$
از طرفى داريهم:
$1+\tan ^{r} \alpha=\frac{1}{\cos ^{r} \alpha} \Rightarrow 1+\tan ^{r} \alpha=\frac{r V}{r} \Rightarrow \tan ^{r} \alpha=\frac{r V}{r}-1=\frac{r r}{r}$

چون طبق فرض مساحت دو ناحيئ هاشور خورده با هـم برابرنـد، لــذا مســاحت
قطاع OAB و مثلث OAC با هم برابر است و داريم:
$\left\{\begin{array}{l}\mathrm{S}_{\mathrm{OAB}}=\frac{1}{r} r^{r} \theta=\frac{1}{r} r^{r} \times \frac{r}{\Delta} \\ \mathrm{~S}_{\Delta}^{\Delta A C} \\ \mathrm{OAC} \\ \frac{1}{r} \times \underbrace{\mathrm{OA} \times \mathrm{OC}}_{r^{r}} \times \sin \left(\alpha+\frac{r}{\partial}\right)\end{array} \Rightarrow \frac{r}{10} r^{r}=\frac{1}{r} r^{r} \sin \left(\alpha+\frac{r}{\partial}\right)\right.$
$\Rightarrow \sin \left(\alpha+\frac{r}{\omega}\right)=0 / 9$

11

$\stackrel{\Delta}{\mathrm{OAH}}: \sin 90^{\circ}=\frac{\mathrm{OH}}{\mathrm{OA}}$
$\Rightarrow \mathrm{OH}=\mathrm{OA} \sin 90^{\circ}=r \mu \times \frac{\sqrt{r}}{r}=r r \sqrt{r}$
$\sin \alpha=\frac{O H}{O B}=\frac{r r \sqrt{r}}{r \Lambda}=\frac{11 \sqrt{r}}{r r}$
$\cos ^{r} \alpha=1-\sin ^{r} \alpha=1-\left(\frac{I \mid \sqrt{r}}{Y Y}\right)^{r}=1-\frac{1 Y I \times Y}{Y Y \times Y Y}=\frac{Y I Y}{Y Y \times Y Y}$
$\Rightarrow \cos \alpha=\frac{\sqrt{Y I \mu}}{Y \mu}$
ب 9

$$
\text { لذا از آنجايى كه } 4 \Delta^{\circ} \text { معادل } \frac{\pi}{4} \text { راديان است، داريم: }
$$

$\hat{\mathrm{A}}+\frac{\pi}{r^{r}}+\frac{\pi}{\omega}=\pi \Rightarrow \mathrm{A}=\pi-\frac{9 \pi}{r_{0}}=\frac{11 \pi}{r_{0}}$
$\mathrm{L}=\mathrm{r} \theta \Rightarrow \mathrm{L}=1 \circ \circ \times \frac{11 \pi}{r_{\circ}}=\Delta \Delta \pi$
10 10 اكر زواياى مفروض را 1 و 1 در نظر بگيريه، داريم:
$\left\{\begin{array}{l}\alpha+\beta=\frac{\pi}{r} \\ \alpha-\beta=\frac{r \pi}{q}\end{array} \xrightarrow{\Delta}\left\{\begin{array}{l}\alpha=\frac{1 \vee \pi}{r \varepsilon} \\ \beta=\frac{\pi}{r q}\end{array}\right.\right.$
$\frac{D}{1 \wedge_{0}}=\frac{R}{\pi} \Rightarrow \frac{D}{1 \wedge_{0}}=\frac{\frac{\pi}{r q}}{\pi} \Rightarrow \frac{D}{1 \Lambda_{0}}=\frac{1}{r q} \Rightarrow D=0^{\circ}$
يعنى زاوئ كوچککتر مثلث برحسب درجه، ه د درجه است
(Y ابتدا كمانها را ساده مىكنيم:
$\left\{\begin{array}{l}\frac{9 \pi}{r}-\alpha=\frac{\wedge \pi}{r}+\frac{\pi}{r}-\alpha=r \pi+\frac{\pi}{r}-\alpha \\ \alpha-\frac{1 \vee \pi}{r}=\alpha-\frac{19 \pi}{r}-\frac{\pi}{r}=\alpha-\frac{\pi}{r}-\wedge \pi \\ \frac{19 \pi}{r}-\alpha=\frac{r \circ \pi}{r}-\frac{\pi}{r}-\alpha=1 \circ \pi-\frac{\pi}{r}-\alpha \\ \alpha-9 \pi=\alpha-\wedge \pi-\pi=\alpha-\pi-\wedge \pi\end{array}\right.$
$\xrightarrow[\text { به سمت بالا }]{\stackrel{1}{r}}$

با توجـه بــه شـكل، خـط $y=1$ ، نمـودار تـابع $y=\frac{1}{r}-\cos \left(x+\frac{\pi}{r}\right)$ را در بازءٔ [
 داريه:
$-1-\sin \left(x-\frac{\pi}{4}\right)=\circ \Rightarrow \sin \left(x-\frac{\pi}{4}\right)=-1$
$\Rightarrow x-\frac{\pi}{q}=-\frac{\pi}{r} \Rightarrow x=x_{B}=-\frac{\pi}{r}+\frac{\pi}{q}=-\frac{\pi}{r}$
نقاط A و C، نقاط مينيمم تابع هستند، لذا داريم:
$-1 \leq-\sin \left(x-\frac{\pi}{9}\right) \leq 1 \xrightarrow{-1}-r \leq-1-\sin \left(x-\frac{\pi}{9}\right) \leq$ 。
پس كمترين مقدار تابع برابر r- است، لذا داريم:
$y=-1-\sin \left(x-\frac{\pi}{4}\right)=-r \Rightarrow \sin \left(x-\frac{\pi}{4}\right)=1$
$\Rightarrow\left\{\begin{array}{l}x-\frac{\pi}{q}=-\frac{r \pi}{r} \Rightarrow x=-\frac{r \pi}{r}+\frac{\pi}{q}=\frac{-r \pi}{r}=x_{A} \\ x-\frac{\pi}{q}=\frac{\pi}{r} \Rightarrow x=\frac{\pi}{r}+\frac{\pi}{q}=\frac{r \pi}{r}=x_{C}\end{array}\right.$
$\Rightarrow \frac{y_{A}+y_{C}}{x_{A}+x_{B}+x_{C}}=\frac{-r-r}{-\frac{r \pi}{r}-\frac{\pi}{r}+\frac{r \pi}{r}}=\frac{-r}{-\pi}=\frac{r}{\pi}$

$\max =a-1=y_{A}=y_{B} \Rightarrow \sin x=1 \Rightarrow\left\{\begin{array}{l}x=\frac{\pi}{r}=x_{A} \\ x=\frac{\Delta \pi}{r}=x_{B}\end{array}\right.$
نقطءٔ C، نقطءٔ مينيمم تابع است، يعنى:
$y_{C}=-a-1=\min \Rightarrow \sin x=-1 \Rightarrow x=\frac{r \pi}{r}=x_{C}$
حال با توجه به شكل زير داريم:

$\Rightarrow\left\{\begin{array}{l}\mathrm{CH}=\mathrm{y}_{\mathrm{A}}-\mathrm{y}_{\mathrm{C}}=(\mathrm{a}-1)-(-a-1)=r a \\ \mathrm{AB}=x_{B}-x_{A}=\frac{\Delta \pi}{r}-\frac{\pi}{r}=r \pi\end{array}\right.$
$\Rightarrow \underset{\mathrm{ABC}}{\mathrm{S}_{\Delta}}=\frac{1}{r} \mathrm{CH} \times \mathrm{AB}=1 \wedge \pi \Rightarrow \frac{1}{r} \times r \mathrm{a} \times r \pi=1 \wedge \pi \Rightarrow \mathrm{a}=q$
$\Rightarrow f(x)=9 \sin x-1 \Rightarrow f\left(\frac{V \pi}{q}\right)=9 \sin \frac{V \pi}{9}-1$
$=9\left(-\frac{1}{r}\right)-1=-\frac{11}{r}=-\Delta / a$

$$
\begin{align*}
& \frac{\sin x}{1-\cos x}+\frac{1+\cos x}{\sin x}=\frac{\sin ^{r} x+1-\cos ^{r} x}{\sin x(1-\cos x)} \\
& =\frac{\left(1-\cos ^{r} x\right)+\left(1-\cos ^{r} x\right)}{\sin x(1-\cos x)}=\frac{r(1-\cos x)(1+\cos x)}{\sin x(1-\cos x)} \\
& =\frac{r(1+\cos x)}{\sin x}=r \\
& \Rightarrow \frac{1+\cos x}{\sin x}=1 \Rightarrow 1+\cos x=\sin x \Rightarrow\left\{\begin{array}{l}
x=\pi \\
1 \\
x=\frac{\pi}{r}
\end{array}\right.
\end{align*}
$$

$\Rightarrow \cot \frac{\pi}{r}=。$

طبق فرضيات تست، هدف محاسبئ طول پارهخط AB است:
$\left\{\begin{array}{l}\mathrm{A}(\circ, r) \\ \mathrm{B}(\pi, \circ)\end{array} \Rightarrow \mathrm{AB}=\sqrt{\pi^{r}+r}\right.$

F F Fr شكل نشاندادهشده در صورت سؤال، حذف پردههـاى ميـانى انگشتان برخى پرندگان در دوران جنينى است (نادرستى گزينئ (Y)). اين فرايند
 برنامهريزىشدء ياخته مىشود، چون پرتوهاى خورشيد واجـد اشـعأ فـرابنفش بوده و مىتواند سبب بروز سرطان شوند.

بررسى ساير كزينمها:
() دقت داشته باشيد كـه مـرگ برنامـهريزىشــــده تصـادفى نبـوده و براسـاس

 نه بافتمردگى.

بررسى موارد:
الف) برخى از افرادى كه تحت تأثير پرتوهاى شديد در روش پرتودرمانى قرار گرفته

خونى بسازند و ميزان ترشح هورمون اريترويويتين نيز تغيير پيدا مىكند.

 سرطانىشده باشند، امكان از بين رفتن ياختههاى بنيادى لنفوئيدى با استفاده از روش پرتودرمانى وجود دارد. ج) در روش شيمىدرمانى از دارو براى سركوب تقسيم ياختـهها در تمــام بــن استفاده مىشود. د) در روش شيمىددرمانى (نه پرتودرمـانى) بـه دنبـال اسـتفاده از دارو در پـى
 مىشود. كاهش ترشح دوپامين در حالت اعتياد نيـز علائمـى ماننــد كسـالت و و

بى حوصلگى ايجاد مىكند.
خ F F Y Y
 پروتئينها و پاسخ التهابى و تب مشاهده مىشوند. در اين خط از سيستم ايمنـى بدن انسـان، پروتئينهـاى مكمـل بــه صـورت محلـول در خونـاب وجــود دارنــد.
 بيگانه بوده و بدون همكارى با يكديگَر امكان ايجاد منفذ غشايى را ندارند.

بررسى ساير كزينمها:
(1) دقت داشته باشيد كه پس از ايجاد منفذ غشـايى در غشـاى بـاكترى، ايـن

ايجاد شده و حاصل تقسيم مونوسيت نيستند.
 يك عامل بيمارىزا در ريزكيسههاى سيتوپلاسمى در ياختهٔ نوتروفيل مشـاهده شود. ياختهٔ نوتروفيل به دليل چابكى بودن و داشتن مواد دفاعى اندك به ياختئ واكنش سريع معروف است. ٪) به دنبال آسيب بافتى، پاسخ التهابى ايجاد مىشود. در پاسخ التهـابى ابتـدا
 شيميايیى نفوذذيرى رگهاى خونى را افـزايش مىدهــد، امـا ايـن تزينـه چــرا نادرست است، دقت داشته باشيد كه ياختئ ماستوسيت بيگانهخوار بافتى بوده و در خوناب مشاهده نمىشود.
$\sin (-\alpha)=-\sin \alpha \quad(*)$
$y_{1}=1-\sin \left(x-\frac{\pi}{4}\right)$
$y_{r}=1-\cos \left(\frac{r \pi}{r}-x\right)=1-\cos (\overbrace{\frac{\pi}{r}+\underbrace{\frac{\pi}{r}-x}_{\theta}}^{\underbrace{2}})=1+\sin \left(\frac{\pi}{r}-x\right)$
$\stackrel{(*)}{=} 1-\sin \left(x-\frac{\pi}{4}\right) \Rightarrow y_{r}=y_{1}$
پس دو تابع برهم منطبق هستند، يعنى در بیشمار نقطه همديگر را قطع مىكنند.
ز
(Y YI
تنظيمنشده، همان سرطان است. موارد »ب" و »ده نادرست هستند.
بررسى موارد:

 زيستشناسى (Y)، علت اصلى ايجاد سرطان بعضى تغييرات در مـادهٔ زنتيكـى

ياختههاى بدن فرد است. ب) در صورت بروز بيمارى خودايمنى در جزاير لانگرهانس، ديابت نوع يكى ايجـاد شده و ياختههاى ترشحكنندهٔ انسولين كاهش پيدا مى

 ايمنى شده و احتمال متاستاز تودهٔ بدخيم افزايش مى يابــد. منظـور از از اسـتـقرار و رشد تودهٔ سرطانى در نواحى مختلف بدن، دگرنشينى يا متاستاز است.

مى كنند. در اين زمان مطابق شكل، همأ لايههاى لولئ گوارش آلوده شدهاند
 طبيعى از دومـين خـط دفـاعى بـا ترشـح پرفـورين در مبـارزه بـا ياختــهـهاى

 صورت مىگيرد. (1 Fr در مرحله پروفاز ميتوز، فشردگى كروموزومها شروع به افـزايش مىكند. در اين مرحله پوشش هسته شروع به تجزيه مىكند، اما به طـور كامــل در مرحلةٔ پرومتافاز تجزيه مى شود.

بررسى ساير كزينمها:
ب) در هيجيى از مراحل تقسيهم ميتوز، پوشش هسته در اطراف كروموزومهـاى

مرحله، رشتههاى دوك به سانترومر كروموزومها متصل هستند. ¢

 رشتههاى دوكى به سـمت قطبـين مخـالف ياختـه در حــال حركـت هســتند و و همپوشانى رشتههاى دوك ديده مىشود.
 عملكنندهٔ بيشترى از لنفوسيتهاى خاطره داريم.

بررسى ساير كزينمها:
() دقت كنيد سرعت پاسخدهى در ايمنى اختصاصـى همـواره كمتـر از ايمنـى غيراختصاصى است.
(Y) اين گزينه نيز مطابق نمودار كتاب درست است و ميزان ياختههاى ايمنى در

 امكانپپ
F F Fo عبارت سؤال درست است چون لنفوسيتهاى B در انـدامهاى لنفى مانند مغز قرمز استخوان، گرههاى لنفى و ... بر اثر تكامل و يا برخـورد بـا
 گيرندههاى سطحى خود را توليد مىكنند. در همين اندامها، پادتنها مىتوانـند
 غيراختصاصى، پوست و لايههاى مخاطى شركت دارند و گویچههای سفيد خون نقشى ندارند و در دومين خط دفاعى نيز گويچــههای لنفوسـيت نقشى ندارند.

بررسى ساير گزينمها:

() لنفوسيتهاى T در تيموس و لنفوسيتهاى B در مغـز قرمـز اسـتخوان بـالغ

 تنفس و مجارى ادرارى - تناسلى وجود دارد.
 M M M M

بررسى موارد:
الف) ميكروبهاى همزيست سطح پوست با شرايط پوست سازش يافتهاند، اما بيمارىزا نيستند. ب) اشك و بزاق داراى ليزوزيمه هستند و ترشح آنها توسط پل مغزى (بخشـى از ساقٔ مغز) كنترل مىشود. ج) ياختههاى لولئ گوارش و لولهُ تنفس توانايى ساخت موسين را دارند و همــــ اين ياختهها هستهدار هستند و داراى زنهای هاى هستهاى مى وباشند. د) ترشحات مخاطى داراى ليزوزيم هستند.

Tr Tr خودى تغييركرده است. لنفوسيت T در مغز استخوان توليد و در تيموس بـالغ
 لنفوسيت B مى باشد كه مىتواند در مغز استخوان توليد و بالغ شود.

بررسى ساير كزينمها:
 اينترفرون نوع يك توليد مىكنند. Y) لنفوسيت T اوليه، لنفوسيت T كشنده را توليد مىكند كه همانند ياختئ كشنده
 ¢ بعدى با پادگن، تعداد بيشترى ياختئ خاطره پديد مىآورند.

بررسى موارد:
الف) در خط سوم دفاعى، پادتن سبب فعال شدن پروتئينهاى مكمــل مىشـود. اين پروتئين در پاسموسيت توليد مىشود. همانطور كه مىدانيد، پلاسموسـيت توانايى انجام تقسيم ياختهاى را ندارد و در نتيجه هيج ياختهايى توليد نمىكند. ب) لنفوسيت T در غدء تيموس بالغ شده و با ترشح پرفورين و آنــزيم موجــبـ القاى مرگَ برنامهريزىشده در ياختهٔ هدف مىشـود. دقـت داشـته باشــيد كـه

 برنامهريزىشده در ياختئ هدف مىشوند. ج) لنفوسيت كشندهٔ طبيعى تنها در خـط دوم (دفـاع غيراختصاصـى) فعاليـت دارد. دقت داشته باشيد كه لنفوسيت كشندهٔ طبيعى، پرفورين و آنزيم را توسط يك نوع ريزكيسه برونرانى كرده و پيش از (نه پس از) خارج شــدن پرفـورين و

 مى شود. دقت كنيد كه اين لنفوسيتها در هنگام آم آلوده شدن به ويروس، توانايى ترشح اينترفرون نوع يك را دارند. اين پروتئين علاوهبر ياختئ آلوده به ويـروس، بر ياختههاى سالم مجاور همم اثر مى گذارد. ماستوسيت مىتواند هيستامين ترشح كند كـه از بازوفيـل نيـز
 گَشادى عروق حجم بالايى از خون در آنها قرار مىگیییرد.

بررسى ساير كزينمها:

 نمىتوانند در خون حضور پی
 (مونوسيت قابليت تقسيم شدن ندارد). دقت كنيد كه لايههاى سطحى پوسـت،
 ذرهٔ بيعَانه

هيجكدام از موارد، صحيح نيستند. 1 rA
بررسى موارد:
الف) اين مورد معرف مرحلئ GY چرخئ ياختهاى است. دقت كنيد در اين مرحله، توليد عوامل مورد نياز براى تقسيم افزايش مى يايابد، نه اينكه شرئه ب) مرحلئ S، نقطهٔ وارسـى اصـلى نــدارد. در ايـن مرحلــه ميـزان دنـا دورانـا دورابـر مى شود، نه كروموزوم. ج) در انسان و برخى جانداران، كروموزومهاى جنسىاى وجود دارند كه ممكـن
 د) در مردان در ياختههاى چندهستهاى مثل ياختههاى ماهيچپٔ اسكلتى بيش از يك كروموزوم X د وجود دارد.
(1 YV مىكنند. با ايجاد منافذ در غشاى ميكروبها، شرايط براى از بـين رفـتن آنهــا
 مىبايست افزايش يابد.

بررسى ساير كزينمها:

 شود، نه نوتروفيل.
٪) اين گزينه تنها در ارتباط با هيستامين صادق است و نه هر مادهاى.
 نيست (زيرا درشتخوار، گویچهٔ سفيد به حساب نمىآيد). تق F FA

تومور گردد كه به دو دستءٔ خوشخيم و يا بدخيم تقسيم مىشود.
بررسى ساير كزينمها:
 بافتهاى مجاور خود آسيب بزند، بنابراين به كار بردن وازءٔ »به طور حتمهِ برای آن درست نيست.
Y (Y) تومور خوشخيم انواع مختلفى دارد كه يكى از انواع آن، ليپوما نام دارد كـه
 بافت چربى داراى هستأ راندهشده به حاشيه هستند). ب) تومور بدخيم توانايى دترنشينى (متاستاز) دارد كه به وسيلهُ جريان خون يا بـه ويزه لنف به بافتها و نواحى دورتر حمله مىكند، پس الزاماً به كمكى لنف نيست. ٪q Fq پاكسازی گویچههای قرمز مرده در كبد و طحال نقش دارد. توجه كنيــد كــه بــه T دنبال ترشح اينترفرون نوع دو از ياختههاى كشندء طبيعى و لنفوسـيتهارديت كشنده، فعاليت ماكروفاز نيز افزايش مى يابد (حتى به دنبـال فعاليـت پـادتن و پروتئين مكمل نيز افزايش فعاليت ماكروفاز ديده مىشود).

بررسى ساير كزينمها:

 دارينهاى مىتواند قسمتهايى از ميكروب را به گره لنفاوى نزديك منتقل كـرده و سبب فعال شدن لنفوسيت موجود در آن گردد. Y) ماستوسيت و ياختهٔ دارينهاى در بخشهايى از بدن كه با محــيط بيـرون در ارتباط است، به فراوانى يافت مىشوند، ولى فقط ماستوسيت مىتواند با ترشـح

هيستامين باعث گشاد شدن رگ و در نتيجه افزايش نفوذپذيرى آن شود.
 بيگانهخوار نيز است، نوتروفيل نام دارد. دقت كنيد كه نوتروفيلها مـواد دفـاعى

زيادى حمل نمىكنند، نه اينكه اصلاً مواد دفاعى حمل نكنند.

 عبور كرده و به بافتهاى ديگر وارد مىشوند. توجه داشته باشيد كه خون نوعى

بافت پيوندى است. نكته: هر ياختـٔ زنده هستهدار در صـورت آلـوده شــن بــه ويـروس مىتوانـد اينترفرون نوع يك ترشح كنند.
 ياختهها نمىتوانند كرمهاى انگل را فاگوسيت كنند.

بررسى ساير كزينمها:
() مونوسيتها در خارج از خون به ماكروفازها و ياختـههاى دنـدريتى تبـديل مىشوند. اين ياختهها در فرايند التهاب كه با با رسوب اوريك اسيد در مفاصـل و ايجاد بيمارى نقرس پديد مىآيد، شركت مىكنند. ب) بازوفيلها داراى هستئ دوقسمتى روى هم افتاده هسـتـند. ايـن ياختـههــا توانايى ترشح هيستامين را دارند. هيستامين باعث گشاد شدن رگَها مى شود.
 هستند و لنفوسيتهاى T و ياختئ كشـندهٔ طبيعـى كـه خـود نـوعى لنفوسـيت مىباشد، مىتوانند داراى سيتوپاسمى بدون دانه با هستهاى گرد يا بيضى باشند. (1 FF كه تعداد ياختهٔ كمتر، مادهٔ زمينهاى كمتر، كلازن بيشتر و مقاومت بيشترى دارد.

بررسى ساير گزينمها:
 كه در آن فقط گروهى از ياختهها در تماس با لا غشاى پای پايه (شبكهاى از رشتههاى

پروتئينى و گليكوپروتئينى) هستند. ץ) در لائ درونى پوست انسان، رشتههاى بافت پيوندى به طرز محكمى به هم

تابيده شدهاند، نه ياختهها. ¢ (4) تنها خارجىترين ياختههاى لائ بيرونى پوست مردهاند و به تدريج مىريزند و ميكروبها را از بدن دور مىكنند. (1 MD يا سـرطانى مىتوانــد بـا ترشــح پروتئينهــايى ماننــد پرفـورين و آنـزيم مـرگى

انسانى بیردازد.

بررسى ساير كزينمها:

Y (Y) براى ياختههاى سرطانى شده صدق نمى
ץ هيستامين ترشح مىكنند. ياختهٔ كشندءٔ طبيعى، نمىتواند در ترشح هيستامين (مادء گشادكنندهٔ رگها) نقش داشته باشد.
 هدف ايجاد منفذ مىكند.
F F F\& پاكســازى گويحــهههاى قرمــز مــرده و آســيبديده در كبـــد (انــدام ســازندهٔ اريتروپويتين) موجب آزاد شدن آهن موجود در هموگلوبين آنها شده تـا ايـن
 حذف ياختههاى مرده ندارند.

بررسى ساير كزينمها: 1) مطابق شكل مىتوانند در بين ياختههاى اپيدرم پوست نيز به بيگانهخوارى بپردازند. Y ياختههاى دارينهاى با ارائٔ قطعاتى از ميكروبى كه بيگًانهخوارى كردهاند بـهـ لنفوسيت موجود در گره لنفـى، موجـب فعالسـازى آن مىشـوند (لنفوسـيتها

داراى يكى هستُٔ گرد، بيضى و سيتوپاسمى بدون دانه هستند).
 (گويچههای سفيد حاصل از تقسيم و تمايز ياختههاى بنيادى ميلوئيدى) ايجاد شده و در بافتها حضور يابند.

ذرهٔ بيعًانه

Y (Y) يكى از وظايف درشتخوار از بين بردن ياختههاى مرده بافتهـا يــا بقايـاى آنهاست. ماكروفازها در بيشتر نقاط بدن از جمله اندامهاى لنفـى (مغـز قرمـز
 دارند. ياختههاى خونى در مغز قرمز استخوان و اندامهاى لنفـى ديگـر ســاخته

مىشوند (در اندامهاى لنفى انواع لنفوسيتهاى B و T ت توليد مىشوند).

 مويرگها، خود را به عامل بيگانه مىرسانند و با بيگانهخوارى آنها را نابود مىكنند. نكتم: نوتروفيلها داراى هستهاى چندقسمتى با دانههاى روشن ريز هستند.

 هيستامين از ماستوسيتهاى آسيبديده رها (ترشح) مىشود. H FF FF مىشود، نوعى بيمارى است كه عامل آن ويروس HIV است. ويروس ايدز پس
 ايجاد نكند. چنين فردى آلوده به HIV است، اما بيمار نيست و هيه علا علامتـى

 نيست فرد مبتلا به ويروس به فردى بيمار تبديل شود.

بررسى ساير كزينمها:

 لنفوسيتهاى B تضعيف مىشود.「 ايدز علاوهبر روش خونى از طريق برخى ترشحات بدن و در جريان باردارى،
 ¢ ¢) فرد مبتلا به ايدز در صورت ابتلا به كمخطرترين بيمارىهاى واگير ممكن است بميرد.

$$
\begin{aligned}
& \text { (1 FD } \\
& \text { بررسى موارد: }
\end{aligned}
$$

الف) در شيمىدرمانى (نه پرتودرمانى) استفاده از داروها باعث سـركوب تقسـيم
ياختهها در همأ بدن مىشود. ب) با توجه به متن كتاب زيستشناسى (؟)، جراحى يكـى از روشهــاى رايـج درمان سرطان است كه طى آن بايد همءٔ بافت سرطانى (نه همه يـا قسـمتـى از آن) برداشته شود. ج) روشهاى متعددى براى تشخيص و درمان سـرطانهــا وجـود دارد و گـاهـى

 بافتبردارى) از روشهاى كمككننده براى تشخيص سرطان است.
 سرطان را شناسايى كرد.

بررسى ساير كزينمها:
() لنفوسيتهاى T و لنفوسيتههـاى B در صـورت آلـوده شـدن بـه ويـروس

مىتوانند اينترفرون نوع يك ترشح كنند. اين دو نوع لنفوسيت مىتوانند به طور اختصاصى عوامل بيگانه را شناسايى كند.

 پادتن ترشح مىكنند، گيرندء آنتىزنى ندارند، پس نتيجه گرفته مىشود هر ياختـٔ داراى گيرنده، توانايى ترشح پروتئينهايى مانند آن گيرندها تا را نداردي
 صورت آلوده شدن به ويروس مىتوانند اينترفرون نوع يك نيز ترشح كنند كه بر ياختههاى سالم مجاور اثر كرده و آنها را در برابر ويروس مقاوم مىكندند (I FI همهٔ ياختههاى هسـتهدار انسـان در صـورت آلـوده شـدن بـه ويروس مىتوانند اينترفرون نوع يك ترشح كنند كه علاوهبـر ياختـــٔ آلـوده، بـر ياختههاى مجاور همم اثر مىكند و آنها در در برابر ويروس مقاوم مىكيند.

بررسى ساير كزينمها:
Y ب) لنفوسيتهاى خاطره و لنفوسيتهاى عملكننده محصول مسـتقيم تقسـيم
 تكثير آنها به وجود مى آيند.
ץ) لنفوسيتهاى T در غدهٔ تيموس كه در محل دو شاخه شدن نـاى و پشـت
 يعنى مغز استخوان بالغ مى شوند.
 بدون كمك لنفوسيتهاى T كمكکننـده (نوع خاصى از لنفوسيتها كــه مـورد حملةٔ ويروس HIV قرار مىگيرد) نيز فعاليت مناسبى دارند.

بررسى موارد: الف) در مرحلئ پروفاز، سـانتريولها از هـم دور مـــشـوند (افـزايش فاصــله) و رشـتههاى كرومـاتينى (سـاختارهاى تشـكيلدهنده مـاداء وراثتـىى) فشـرددهر مىشوند و طول آنها كاهش مى يابد. ب) در مرحلهٔ پرومتافاز، ميزان گستردگى شبكئ آندوپلاسمى بر اثر تجزيأ آن به قطعات كوچكتر كاهش مى يابد، اما بايد دقت داشته باشيد كه در اين مرحله به
 ج) در مرحلهٔ آنافاز، بر اثر تجزيئ پروتئينهاى اتصالى محـل سـانترومر، تعـداد

دوك تقسيم (همانهايى كه به كروموزومها متصل هستند) كوتاه مىشوند.

 مى يابد و پيجوتابهاى آنها باز با مى شود.
(1 FF
() ياختههاى دارينهاى به علت داشتن انشعابات دارينهمانند، به اين نام خوانده مى شوند. ياختههاى دارينهاى علاوهبر بيگانهخوارى، قسمتهايـي از از ميكـروب را را
 تا اين قسمتها را به ياختههاى ايمنى ارائه كنند. ياختههاى ايمنى با شـناختن اين قسـمتهـا، ميكـروب مهـاجم را شناسـايى خواهنـد كـرد. مطـابق شـكل، ياختههاى دارينهاى در فعالسازى (نه تمايز) لنفوسيتها نقش دارند.
$\Rightarrow \frac{R_{r}}{10}=\frac{\frac{1}{\partial} L_{1}}{L_{1}} \Rightarrow R_{r}=r \Omega$

 تغيير (ثابت) خواهد ماند، در نتيجه داريم:
$m_{r}=m_{r} \xrightarrow{m_{r}=m_{r}=m} \rho_{r} V_{r}=\rho_{r} V_{r}$
$\xrightarrow{\rho_{1}=\rho_{r}} V_{r}=V_{r} \xrightarrow{V=A L} A_{r} L_{r}=A_{r} L_{r}$
$\Rightarrow \frac{\mathrm{L}_{r}}{\mathrm{~L}_{r}}=\frac{\mathrm{A}_{r}}{\mathrm{~A}_{r}}$
$\underbrace{\mathbf{m}_{r}=\mathbf{m}}_{\mathbf{L}_{r}=\Delta \mathbf{m}}$
$\frac{\mathrm{R}_{r}}{\mathrm{R}_{r}}=\frac{\mathrm{L}_{r}}{\mathrm{~L}_{r}} \times \frac{\mathrm{A}_{r}}{\mathrm{~A}_{r}} \xrightarrow{(1)} \frac{\mathrm{R}_{r}}{\mathrm{R}_{r}}=\left(\frac{\mathrm{L}_{r}}{\mathrm{~L}_{r}}\right)^{r} \Rightarrow \frac{\mathrm{R}_{r}}{r}=\left(\frac{\Delta}{1}\right)^{r}$
$\Rightarrow R_{r}=0 \cdot \Omega$
به اين ترتيب، سيم نازكششه و خروجى از دستكاه مقاومـت الكتريكـى معـادل

 (حرقرار است. توان دو نشـان سـهمى بـودن تـابع اسـت. $\frac{R_{r}}{R_{r}}=\left(\frac{L_{r}}{L_{Y}}\right)^{r}$ رابطه (حذف گزينٔ) (ب) (ب)
جهت تشخيص نمودار سمهمى صحيح، عدد فرضى جاىگذارى كرده و مقدار R R را محاسبه مىكنيم: $\frac{\mathrm{R}_{r}}{r}=\left(\frac{r}{1}\right)^{r} \Rightarrow \mathrm{R}_{r}=\wedge \Omega$
(نمودار دادششده در سؤال داريم:

$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow\left\{\begin{array}{l}\mathrm{I}=\circ \Rightarrow \mathrm{V}=\varepsilon \Rightarrow \varepsilon=\mathrm{r} \cdot \mathrm{V} \\ \mathrm{V}=\circ \Rightarrow \varepsilon=\mathrm{Ir} \Rightarrow \mathrm{I}=\frac{\varepsilon}{\mathrm{r}} \Rightarrow 1 \wedge=\frac{\mathrm{r}_{\circ}}{\mathrm{r}} \Rightarrow \mathrm{r}=\frac{\Delta}{\mathrm{r}} \Omega\end{array}\right.$
بنابراين پتانسيل الكتريكى نقاط A و B برابر است با:
$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow\left\{\begin{array}{l}\mathrm{V}_{\mathrm{A}}=\varepsilon-\left(\mathrm{I}_{\mathrm{A}} \times \mathrm{r}\right)=r \circ-\left(r \times \frac{\Delta}{r}\right)=r \Delta \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=\varepsilon-\left(\mathrm{I}_{\mathrm{B}} \times r\right)=r \circ-\left(1 r \times \frac{\Delta}{r}\right)=1 \circ \mathrm{~V}\end{array}\right.$
با دقت به شكل (Y) متوجه مى شويم كه اختلاف پتانسيل الكتريكى دو سر با باترى و اختلاف پتانسيل الكتريكى دو سر مقاومت R با هم برابر هستند، پس داريمّ
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \Rightarrow \frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}}}=\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}} \times \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{1 \circ}{r \Delta} \times \frac{r}{1 r}=\frac{1}{1 \circ}$

F F

$$
\begin{aligned}
& L_{1}=L, L_{r}=L-\% \cdot L=L-\frac{r}{\partial} L \Rightarrow L_{r}=\frac{r}{\partial} L \\
& r_{1}=r, r_{r}=r, r_{r}=r_{r}-\% \varphi r_{r}=r-\frac{1}{r} r=\frac{r}{r} r \\
& m_{r}=m_{r} \xrightarrow{m=\rho V} V_{r}=V_{r} \Rightarrow L_{r} A_{r}=L_{r} A_{r} \\
& \xrightarrow{A=\pi r^{r}} \frac{L_{r}}{L_{r}}=\left(\frac{r_{r}}{r_{r}}\right)^{r}(*)
\end{aligned}
$$

با توجه به رابطءٔ مقاومت داريهم:

$\Rightarrow \frac{\mathrm{R}_{r}}{\mathrm{R}_{1}}=\frac{\mathrm{L}_{r}}{\mathrm{~L}_{r}} \times \frac{\mathrm{L}_{r}}{\mathrm{~L}_{1}} \times\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{r}} \times \frac{\mathrm{r}_{r}}{r_{r}}\right)^{r} \xrightarrow{(*)} \frac{\mathrm{R}_{r}}{\mathrm{R}_{1}}=\frac{r}{\Delta} \times\left(\frac{r}{r}\right)^{\psi} \simeq 1 / \wedge 9$
مقاومت الكتريكى سيهم تقريباً 19 درصد افزايش مى يابد.
Y Y FV FV
$\left\{\begin{array}{l}R_{C u}=R_{A l} \Rightarrow\left(\rho \frac{L}{A}\right)_{C u}=\left(\rho \frac{L}{A}\right)_{A l} \\ \rho_{A l}=\rho_{C u}+\% \circ \circ \rho_{C u}=r \rho_{\mathrm{Cu}}\end{array}\right.$
$\Rightarrow \frac{\rho_{\mathrm{Cu}} \times \mathrm{L}_{\mathrm{Cu}}}{A_{\mathrm{Cu}}}=\frac{r \rho_{\mathrm{Cu}} \times L_{A l}}{A_{\mathrm{Al}}} \Rightarrow \frac{L}{A_{\mathrm{Cu}}}=\frac{r \times \frac{r}{r} \mathrm{~L}}{A_{\mathrm{Al}}}$
$\Rightarrow \mathrm{A}_{\mathrm{Al}}=\mathrm{r}_{\mathrm{Cu}}$
$\rho=\frac{\mathrm{m}}{\mathrm{V}} \Rightarrow \mathrm{m}=\rho \mathrm{V}$
با توجه به رابطءٔ چگگالى داریم:
$\xrightarrow[\mathrm{V}=\mathrm{A} \times \mathrm{L}]{\mathrm{m}_{\mathrm{Cu}}} \frac{\rho_{\mathrm{Cu}}}{\mathrm{m}_{\mathrm{Al}}} \times \frac{\mathrm{A}_{\mathrm{Cu}}}{\rho_{\mathrm{Al}}} \times \frac{\mathrm{L}_{\mathrm{Cu}}}{\mathrm{L}_{\mathrm{Al}}}$
$\Rightarrow \frac{m_{C u}}{m_{A l}}=\frac{q}{r / v} \times \frac{A_{C u}}{r A_{C u}} \times \frac{L}{\frac{r}{r} L} \Rightarrow \frac{m_{C u}}{m_{A l}}=\frac{1 \circ}{r} \times \frac{1}{r} \times \frac{r}{r}=\frac{r \circ}{r v}$
Y F
بررسى عبارتهاى نادرست:
الف) تغييرات مقاومت الكتريكى R روى ساختمان سيم نمىتواند اثرگذار باشد. پس با افزايش مقاومت، طول سيم و شعاع سطح مقطع تغييرى نمىكنند. (هـر چند محاسبات عددى، صحيح باشند.) ج) مقاومت ويزهٔ نيهرساناها با افزايش دما، كــاهش يافتــه و مقاومـت ويــرٔه رساناهاى فلزى با افزايش دما افزايش مى يابد. د) رئوستا نوعى مقاومت متغير است كه از سيمى با مقاومت ويزَٔ نسبتاً زياد ساخته مىشود. رئوستا مىتواند قسمت دلخواهى از سيهم را در مسير جريان قرار دهد.
 از دستگاه عبور مىدهيم. مقاومت الكتريكى سيم باقىمانده كه قرار اسـت وارد دستگاه شود را محاسبه مىكنيم:
$R=\rho \frac{L}{A} \Rightarrow \frac{R_{r}}{R_{1}}=\frac{L_{Y}}{L_{Y}}$

جريان خروجى از باترى پس از افزايش مقاومت خارجى برابر است با:
$I_{r}=\frac{\varepsilon}{R_{r}+r}=\frac{\varepsilon}{r / \Delta+1}=\frac{\varepsilon}{\frac{11}{r}}=\frac{r}{11} \varepsilon$
مقدارى كه ولتسنج پس از افزايش مقاومت خارجى نشان میدهد، برابر است با:
$\mathrm{V}_{\mathrm{r}}=\varepsilon-\mathrm{I}_{Y} \mathrm{r}=\varepsilon-\left(\frac{r}{11} \varepsilon \times 1\right)=\frac{9}{11} \varepsilon$
$\Delta \mathrm{V}=\mathrm{V}_{r}-\mathrm{V}_{1}=\frac{q}{11} \varepsilon-\frac{r}{\mu} \varepsilon \Rightarrow \Delta \mathrm{~V}=\frac{(\Gamma \varepsilon-\mu r) \varepsilon}{11 \times \mu}=\frac{r \varepsilon}{11 \times \mu}: \Delta$
$\frac{\Delta V}{V_{1}} \times 100=\frac{\frac{r \varepsilon}{11 \times \mu}}{\frac{r \varepsilon}{r}} \times 100=\frac{1}{11} \times 100 \simeq \% 9$
يعنى عددى كه ولتسنج ايدهآل نشان مىدهد پس از افزايش مقاومت خارجى،
حدود 9 درصد افزايش مى يابد.

 م

اگر كليد K بسته شود، عددى كه ولتسنج نشان میى مدهد، برابر است با: $\mathrm{V}_{\mathrm{T}}=\varepsilon-\mathrm{Ir} \Rightarrow \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{L}}-\mathrm{Ir}$

با توجه به اطلاعات دادهشده در سؤال داريم:
$\Rightarrow \mathrm{V}_{\mathrm{r}}-\mathrm{V}_{1}=\mathrm{Ir} \xrightarrow{\mathrm{I}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}}} \varepsilon=\left(\frac{\varepsilon}{\mathrm{r}+\mathrm{R}}\right) \times \mathrm{r} \Rightarrow \varepsilon=\left(\frac{\mathrm{r}_{0}}{\mathrm{r}+\mathrm{f}}\right) \times \mathrm{r}$
$\Rightarrow r=\frac{1 \circ r}{r+r} \Rightarrow r r+i r=1 \circ r \Rightarrow v r=1 r \Rightarrow r=\frac{i r}{V} \Omega$

$1 \Delta V$

با توجه به اطلاعات دادهشده هر سؤال داريم:
$\mathrm{P}=\varepsilon \mathrm{I}-r \mathrm{I}^{r} \Rightarrow\left\{\begin{array}{l}\mathrm{I}_{1}=\varepsilon \mathrm{A} \Rightarrow \mathrm{P}_{1}=\varepsilon \varepsilon-r \varepsilon \mathrm{r} \\ \mathrm{I}_{\mathrm{r}}=1 \circ \mathrm{~A} \Rightarrow \mathrm{P}_{\mathrm{r}}=1 \circ \varepsilon-1 \circ \circ \mathrm{r}\end{array}\right.$
$\Rightarrow \mathrm{P}_{1}=\mathrm{P}_{\mathrm{r}} \Rightarrow \varepsilon \varepsilon-r q \mathrm{r}=1 \circ \varepsilon-1 \circ \circ \mathrm{r} \Rightarrow \mathrm{r} \varepsilon=\varepsilon \mu \mathrm{r} \Rightarrow \frac{\varepsilon}{\mathrm{r}}=1 \varepsilon\left({ }^{*}\right)$ ولتسنج اختلاف پتانسيل الكتريكى دو سر باترى را نشـان مىدهــد، بنـابراين وقتى ولتسنج عدد صفر را نشان مىدهد، داريم: $\mathrm{V}=\varepsilon-\mathrm{Ir} \xrightarrow{\mathrm{V}=\circ} \circ=\varepsilon-\mathrm{Ir} \Rightarrow \varepsilon=\mathrm{Ir} \Rightarrow \mathrm{I}=\frac{\varepsilon}{\mathrm{r}} \xrightarrow{(*)} \mathrm{I}=1 \varepsilon \mathrm{~A}$ با با توجه به نمودار دادهشده در سؤال و رابطءٔ اختلاف پتانسـيل الكتريكى داريم:
$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow\left\{\begin{array}{l}\mathrm{I}=\circ \Rightarrow \mathrm{V}=\varepsilon=\varsigma \mathrm{V} \\ \mathrm{V}=\circ \Rightarrow \mathrm{Ir}=\varepsilon \Rightarrow \mathrm{r}=\frac{\varepsilon}{\mathrm{I}}=\frac{\varepsilon}{10}=0 / \varsigma \Omega\end{array}\right.$
پس جريان خروجى از باترى برابر است با:
$\mathrm{I}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}} \Rightarrow \mathrm{I}=\frac{\varepsilon}{1 / \varphi+0 / \varphi}=\frac{\varepsilon}{r}=r \mathrm{~A}$
$\left\{\begin{array}{l}\mathrm{I}=\frac{\Delta \mathrm{q}}{\mathrm{t}} \\ \Delta \mathrm{q}=\mathrm{ne}\end{array} \Rightarrow \mathrm{It}=\mathrm{ne} \Rightarrow \mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}=\frac{r \times r \text { 。 }}{1 / 9 \times 10^{-19}} \Rightarrow \mathrm{n}=\frac{9}{18} \times 10^{\mathrm{r}}\right.$
$\Rightarrow \mathrm{n}=\Delta / 9 \Gamma \Delta \times 10^{\Gamma_{0}}$
$\left\{\begin{array}{l}\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \Rightarrow \mathrm{V}=\mathrm{RI} \\ \mathrm{I}=\frac{\varepsilon}{\mathrm{r}+\mathrm{R}}\end{array} \Rightarrow \mathrm{V}^{\prime}=\mathrm{R}\left(\frac{\varepsilon}{\mathrm{r}+\mathrm{R}}\right)\right.$
$\Rightarrow\left(\varepsilon_{0}-r / \Delta\right)=r \times\left(\frac{\varepsilon_{0}}{r+r}\right) \Rightarrow \Delta V / \Delta=\frac{r r_{0}}{r+r}$
$\Rightarrow \Delta V / \Delta r+1 / \Delta=1 r_{0} \Rightarrow \Delta V / \Delta r=\Delta \Rightarrow r=\frac{\Delta}{\Delta V / \Delta}=\frac{1}{11 / \Delta}$
$\Rightarrow \mathrm{r}=\frac{10}{110} \Omega \Rightarrow \mathrm{r}=\frac{r}{r_{r}} \Omega$
$\frac{\mathrm{r}}{\mathrm{R}}=\frac{\frac{r}{r r}}{r}=\frac{1}{r r}$
بنابراين نسبت خواستهشده برابر است با: (r ar

Ir $=\%$ با توجه به اطلاعات دادهشده در سؤال داريم: $\frac{1}{\kappa} \varepsilon=\frac{\varepsilon r}{R+r} \Rightarrow \mu r=R+r \Rightarrow R=r r$ r مقاومت متغير R، R ا 1 درصد افزايش يافته، يعنـى مقاومـت الكتريكـى R، دو برابر شده است، بنابراين:
$R_{r}=r R=r \times(r r)=\varphi r$

$\Rightarrow \mathrm{I}_{\mathrm{r}} \mathrm{r}=\frac{\varepsilon \mathrm{r}}{9 \mathrm{r}+\mathrm{r}}=\frac{\varepsilon \mathrm{r}}{\mathrm{Vr}_{r}} \Rightarrow \mathrm{I}_{\mathrm{r}} \mathrm{r}=\frac{\varepsilon}{\mathrm{V}} \Rightarrow \frac{\mathrm{I}_{\mathrm{r}} \mathrm{r}}{\varepsilon}=\frac{1}{\mathrm{~V}}$
(1 Dr آن بستگى داشته و مقاومت الكتريكى مدار روى آن تأثيرى ندارد. (1 DF R
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{1 r \times 10^{-1}}{r_{00} \times 10^{-r}}=\frac{r r}{4} \times \frac{10^{-1}}{10^{-1}} \Rightarrow \mathrm{R}=r \Omega$
جريانى كه آميرسنج نشان مىدهـد، همـان جريـان خروجـى از بـاترى اسـت، بنابراين:
$\mathrm{I}=\frac{\varepsilon}{\mathrm{r}+\mathrm{R}} \Rightarrow 0 / \mu=\frac{r}{r+r} \Rightarrow 0 / \uparrow r+1 / r=r \Rightarrow 0 / \mu r=0 / \lambda \Rightarrow r=r \Omega$ $\frac{r}{R}=\frac{r}{r} \quad$ بنابراين نسبت خواستهشده برابر است با: (
$\mathrm{I}_{1}=\frac{\varepsilon}{\mathrm{R}_{1}+\mathrm{r}}=\frac{\varepsilon}{r+1}=\frac{\varepsilon}{4}$
ولتسنج اختلاف پتانسيل الكتريكى دو سر باترى را نشـان مىدهــد، بنـابراين قبل از افزايش مقاومت خارجى داريم:

$$
\mathrm{V}_{1}=\varepsilon-\mathrm{Ir}_{1}=\varepsilon-\left(\frac{\varepsilon}{\varphi} \times 1\right)=\frac{r}{r} \varepsilon
$$

مقاومت خارجى Do درصد افزايش يافته است، بنابراين:
$R_{r}=R_{1}+\% . \Delta \cdot R_{1}=R_{1}+\frac{1}{r} R_{1}$
$\Rightarrow R_{r}=\frac{r}{r} R_{1}=\frac{r}{r} \times r=r / \Delta \Omega$

حل ,ينزيى سزوالات اين رنترپ را در , DriQ.com ششايتر كنير.

| | فيزيك

بنابراين:

$\left\{\begin{array}{l}\frac{\varepsilon^{r}}{\mu_{r}}=r_{0} \\ \frac{\varepsilon}{r r}=\Lambda\end{array} \Rightarrow \frac{\frac{\varepsilon^{r}}{\mu_{r}}}{\frac{\varepsilon}{r r}}=\frac{r_{0}}{\Lambda} \Rightarrow \frac{\varepsilon}{r}=\frac{\Delta}{r} \Rightarrow \varepsilon=\Delta V\right.$
$\frac{\varepsilon}{r \mathrm{r}}=\lambda \Rightarrow \frac{\Delta}{r \mathrm{r}}=\lambda \Rightarrow \Delta=19 \mathrm{r} \Rightarrow r=\frac{\Delta}{19} \Omega$
براى كشيدن نمودار اختلاف پتانسيل الكتريكى دو سر باترى بر حسب جريــان عبورى از آن به صورت زير عمل مىكنيم:
$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow\left\{\begin{array}{l}\mathrm{I}=\circ \Rightarrow \mathrm{V}=\varepsilon=\Delta \mathrm{V} \\ \mathrm{V}=\circ \Rightarrow \mathrm{Ir}=\varepsilon \Rightarrow \mathrm{I}=\frac{\varepsilon}{\mathrm{r}}=\frac{\Delta}{\frac{\Delta}{19}}=19 \mathrm{~A}\end{array}\right.$

(Y ST

 مقاومت x اx ا در نظر بكيريم، آنگاه داريم:
$V_{1}=x$
$V_{r}=\frac{q}{4} x=1 / \Delta x$
$V_{r}=\frac{1 \Lambda}{q} x=r x$
از طرفى بيشينئ اختلاف پتانسيل الكتريكـى قابـل تحمـل هـر مقاومـت را بـهـ بزرگترين مقاومت اختصاص مىدهيم:
$V_{\text {max }}=V_{r}=r x \Rightarrow I r=r x \Rightarrow x=r V$
اختلاف پتانسيل الكتريكى دو نقطةٔ A و B دو سر مقاومتهاى
$V_{A B}=V_{1}+V_{r}+V_{r}=x+1 / \Delta x+r_{x}$
$\Rightarrow V_{A B}=\Delta / \Delta x=\Delta / \Delta x \mu=r r V$
R
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \Rightarrow \mathrm{I}=\frac{\mathrm{V}_{\mathrm{I}}}{\mathrm{R}}=\frac{\Gamma \mathrm{F}}{\mu_{0}}=0 / 9 \mathrm{~A}$
اختلاف پتانسيل الكتريكى دو سر باترى با اختلاف پتانسيل الكتريكـى دو سـر مقاومت برابر است، بنابراين:
$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow \mathrm{Ir}=\varepsilon-\mathrm{V} \Rightarrow \circ / \varphi \mathrm{r}=\mathrm{r}_{0}-\mathrm{rr}_{\mathrm{F}} \Rightarrow 0 / \varphi \mathrm{r}=\varphi$
$\Rightarrow \mathrm{r}=\frac{9}{0 / 9}=1 . \Omega$
توان مصرفى باترى برابر است با:
$\mathrm{P}=\mathrm{rI}^{r}=10 \times(0 / 9)^{r}=10 \times 0 / 49 \Rightarrow \mathrm{P}=r / 9 \mathrm{~W}$

ابتدا مقاومت الكتريكى سيم مسى را به دست مى آوريم: \quad به
$\mathrm{R}=\rho \frac{\mathrm{L}}{\mathrm{A}} \underset{\mathrm{r}=\frac{\mathrm{D}}{\mathrm{r}}=\Delta \mathrm{mm}}{\mathrm{A}=\pi \mathrm{r}^{r}} \mathrm{R}=\frac{1 / V \times 10^{-\lambda} \times V \Delta \times 10^{-1}}{r \times r \Delta \times 10^{-9}}$ $\Rightarrow R=\frac{1 / v \times V \Delta}{r \times r \Delta} \times \frac{10^{-q}}{10^{-\varphi}} \Rightarrow R=1 / v \times 10^{-r} \Omega$

آهنگى مصرف انرزى كه همان توان مصرفى است، برابر است با:
$\mathrm{P}=\frac{\mathrm{V}^{r}}{\mathrm{R}}=\frac{\mu \mu \times \mu \mu}{1 V \times 10^{-\mu}}=9 \Lambda \times 10^{\mu} \mathrm{W}=9 \Lambda \cdot \mathrm{~kW}$

$\mathrm{P}=\frac{\mathrm{U}}{\Delta \mathrm{t}} \Rightarrow \mathrm{U}=\mathrm{P} \Delta \mathrm{t}=10 \times 9 \circ \times 1=r 10 \circ \mathrm{~Wh} \times 10^{-r}$ $\Rightarrow U=r / \wedge k W h$
انرثى مصرفى يك منزل مسكونى به ازاى مصرف ده لامپ حبابى در مدت يك سال برابر است با:
$U_{1}=U \times\left(j g, r_{0}\right) \times\left(0 \omega_{0} / r\right)=r / \lambda \times r r_{0}$
$\Rightarrow \mathrm{U}_{1}=1 \mathrm{Vr} \lambda \mathrm{kWh}$
حال بهاى برق مصرفى در يكى سال برای ده لامپ حبابى را به دست مى آوريم: $C_{1}=U_{1} \times 100=|V Y \wedge \times 100=| V Y \wedge 00$ تومان

 ده لامپ SMD در يك سال برابر است با:
$U_{\gamma}=\frac{1}{10} \times 1 V \Gamma \wedge=1 V \Gamma / \lambda \mathrm{kWh}$
حال بهاى برق مصرفى براى ده لامپ SMD در يك سال را محاسبه میكنيم: $C_{Y}=U_{Y} \times 100=1 V Y / \Lambda \times 100=1 V Y \Lambda_{0}$ توم

بنابراين:

 $\Delta \mathrm{C}=\mathrm{C}_{\mathrm{Y}}-\mathrm{C}_{1}=\% \cdot \mathrm{C}_{1}-\mathrm{C}_{1}$ پرداخت مىشود.
$\Rightarrow \Delta C=-\frac{9}{10} \times I V Y \Lambda \circ \circ=-1 \Delta \Delta \Delta T \circ$ تومان
$P_{\text {P }}$

بنابراين توان خروجى باترى برابر است با:

 معادلهٔ يك سهمى است، بنابراين با توجه به طول و عرض رأس سهمیى داريم: . $\Rightarrow x=\frac{-b}{r a} \Rightarrow x=\frac{-\varepsilon}{-r r} \Rightarrow x=\frac{\varepsilon}{r r} \Rightarrow I_{S}=\frac{\varepsilon}{r r}$
 $=\frac{r \varepsilon^{r}}{\mu r}-\frac{\varepsilon^{r}}{\mu r}=\frac{\varepsilon^{r}}{\mu r}$

حل ,ينئيى سَؤالات اين رنترهـ را در
,بسايت DriQ.com ششاهره كني.

 آنكاه داريم:
$x+\varphi x=\frac{\Lambda}{\Delta} \Rightarrow \Delta x=\frac{\Lambda}{\Delta} \Rightarrow x=\frac{\Lambda}{r \Delta}=0 / r r A$
بنابراين جريان عبورى از مقاومت $\Delta \Omega$ برابر است با:
$I_{\Delta}=r \times \circ / r r=1 / r \wedge A$
بنابراين اختلاف پتانسيل الكتريكى دو سر مقاومت $\Delta \Omega$ برابر است با:
$\mathrm{V}_{\Delta}^{\prime}=\mathrm{I}_{\Delta} \mathrm{R}=1 / ヶ \lambda \times \Delta=\varnothing / \uparrow \mathrm{V}$
$\Delta \mathrm{V}=\mathrm{V}_{\Delta}^{\prime}-\mathrm{V}_{\Delta}=9 / \varphi-\mathrm{V} / \Delta=-1 / 1 \mathrm{~V}$
بنابراين:
پی اختلاف پتانسيل الكتريكى دو سر مقاومـت $\Delta \Omega$ بـه انـدازء //ا ولــت
كاهش مى يابد.

كوتاه شده و از مدار حذف مىشوند، بنابراين مقاومت معادل مدار در اين حالت
برابر است با:
$\mathrm{R}^{\prime}=9 \Omega$
پس اختلاف پتانسيل دو سر باترى در اين حالت برابر است با:
$\mathrm{V}^{\prime}=\varepsilon-\mathrm{I}^{\prime} \mathrm{r}=\frac{\varepsilon \mathrm{R}^{\prime}}{\mathrm{R}^{\prime}+\mathrm{r}}=\frac{\varphi \varepsilon}{\varphi+r}=\frac{r}{\varphi} \varepsilon$
اكر كليد K باز باشد، جريان از تمام مقاومتها عبور میكنــد، بنــابراين اگـر در
 باترى در اين حالت برابر است با:
$\mathrm{V}=\varepsilon-\operatorname{Ir}=\frac{\varepsilon \mathrm{R}}{\mathrm{R}+\mathrm{r}}=\frac{\varepsilon \mathrm{R}}{\mathrm{R}+r}$
با توجه به فرض سؤال داريم:
$\mathrm{V}^{\prime}=\% \cdot \Lambda \cdot \mathrm{~V} \Rightarrow \frac{r}{r} \varepsilon=\frac{\Lambda}{10}\left(\frac{\varepsilon \mathrm{R}}{\mathrm{R}+r}\right) \Rightarrow \frac{r}{r}=\frac{\lambda}{10}\left(\frac{\mathrm{R}}{\mathrm{R}+\mathrm{r}}\right)$
$\Rightarrow r \circ R+\varphi_{\circ}=r r R \Rightarrow r R=\varphi_{\circ} \Rightarrow R=r \circ \Omega$
وقتى كليد K باز است، مقاومت معادل مدار برابر است با:

$R=\varphi+\frac{q R_{1}}{q+R_{1}}+1 \Lambda \Rightarrow r_{0}=r \mu+\frac{q R_{1}}{q+R_{1}} \Rightarrow \frac{q R_{1}}{q+R_{1}}=q$
$\Rightarrow q R_{1}=\Delta \tau+\varphi R_{1} \Rightarrow r R_{1}=\Delta \digamma \Rightarrow R_{1}=\frac{\Delta \psi}{r}=1 \wedge \Omega$
91

اختلاف پتانسيل الكتريكى دو سر مقاومت RY برابر است با:
$V_{r}=I_{r} R_{r}=0 / r \Delta \times 1 r=r V$
مقاومتهاى R R هر كدام از اين مقاومتها با هم برابر هستند:
$V_{A B}=V_{r}=V_{r}=r V$

٪ مقدار Ir در هر دو حالت كليد بسته و كليد باز را محاسبه كنيم. كليد K بسته است:
 مقاومتهاى R R R_{r} و اتصال كوتاه مى شوند.
$\mathrm{R}_{\mathrm{eq}}^{1}{ }=\mathrm{R}_{1}=\mathrm{R}$
$\mathrm{I}_{1}=\frac{\varepsilon}{\mathrm{r}+\mathrm{R}_{\mathrm{eq}}^{1}}{ }^{1}=\frac{\varepsilon}{\frac{\mathrm{R}}{r}+\mathrm{R}}=\frac{\varepsilon}{\frac{r}{r} \mathrm{R}} \Rightarrow \mathrm{I}_{1}=\frac{r}{r} \frac{\varepsilon}{\mathrm{R}}$
بنابراين افت پتانسيل در حالتى كه كليد K بسته است، برابر است با: $\mathrm{I}_{1} \mathrm{r}=\left(\frac{r}{r} \frac{\varepsilon}{\mathrm{R}}\right) \times \frac{\mathrm{R}}{r}=\frac{\varepsilon}{r}$
$R_{e q_{r}}=R_{1}+R_{r}+R_{r}=9 R \quad$ كليد K باز است: $\mathrm{I}_{r}=\frac{\varepsilon}{r+\mathrm{R}_{\mathrm{eq}}+}=\frac{\varepsilon}{\frac{\mathrm{R}}{r}+\varsigma \mathrm{R}}=\frac{\varepsilon}{\frac{1 r}{r} \mathrm{R}} \Rightarrow \mathrm{I}_{r}=\frac{r}{1 r} \frac{\varepsilon}{\mathrm{R}}$

بنابراين افت پتانسيل در حالتىكه كليد K باز است، برابر است با:
$\mathrm{I}_{\mathrm{r}} \mathrm{r}=\left(\frac{r}{1 r} \frac{\varepsilon}{\mathrm{R}}\right) \times \frac{\mathrm{R}}{r}=\frac{\varepsilon}{1 r}$
$\frac{I_{r} r-I_{1} r}{I_{1} r} \times 100=\frac{\frac{\varepsilon}{\frac{1 r}{}-\frac{\varepsilon}{1 r}}}{\frac{\varepsilon}{r}} \times 100 \simeq \%-V V$ بنابراين:

افت پتانسيل الكتريكى در باترى، VV درصد كاهش مىيابد.

$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \Rightarrow \mathrm{R}=\frac{\mathrm{r} \Delta}{\mathrm{I}}$
$\mathrm{V}=\varepsilon-\mathrm{Ir} \Rightarrow \mathrm{Ir}=\varepsilon-\mathrm{V} \Rightarrow \mathrm{r}=\frac{\varepsilon-\mathrm{V}}{\mathrm{I}}=\frac{r \Delta-r \Delta}{\mathrm{I}}=\frac{1 \circ}{\mathrm{I}}$
توان مصرفى مقاومت R برابر است با:
$P_{1}=R I^{r}=\frac{r \Delta}{I} \times I^{r}=r \Delta I$
توان مصرفى باترى برابر است با:
$P_{r}=r I^{r}=\frac{10}{I} \times I^{r}=1 \cdot I$
$\frac{P_{1}}{P_{r}}=\frac{r \Delta I}{1 \circ I}=r / \Delta$
نسبت خواستهشده برابر است با:

بنابراين اختلاف پتانسيل الكتريكى دو سر مقاومت $\Delta \Omega$ برابر است با: $V_{\Delta}=I_{1} \mathrm{R}=1 / \Delta \times \Delta=V / \Delta \mathrm{V}$
كليد K بسته است: مقاومتهاى K
مقاومت معادل آنها ('R) با مقاومت 1 (R متوالى هستند، بنابراين:
$R^{\prime}=\frac{\Delta \times r_{0}}{\Delta+r_{0}}=r \Omega$
$I_{r}=\frac{\varepsilon}{r+R_{e q_{r}}}=\frac{r^{\psi}}{1+1 \digamma}=\frac{r 千}{1 \Delta} \Rightarrow I_{r}=\frac{\Lambda}{\Delta} A$

شـ

ميانگين انرزى جنبشى ذرهماى سازندهٔ يكى ماده معادل دماى آن
 انرزى گرمايى يك ماده نيز به دماى ماده بستگى داشته و آن هم كاهش مى يابد.

Q $\mathrm{Q}=\mathrm{mc} \Delta \theta$
$r \quad v r$
$19 V_{\circ \circ \mathrm{J}}=r_{\circ \circ \mathrm{g} \times \mathrm{c}_{\mathrm{Oil}} \times(V \Delta-r \Delta)^{\circ} \mathrm{C} \Rightarrow \mathrm{c}_{\mathrm{Oil}}=1 / 9 V, 0}$
آب:Q=mc $\Delta \theta$
$\Psi: \Lambda \circ \circ \mathrm{J}=\mathrm{r}^{\circ} \circ \times \mathrm{C}_{\mathrm{H}_{\Gamma} \mathrm{O}} \times(V \Delta-\Gamma \Delta)^{\circ} \mathrm{C} \Rightarrow \mathrm{c}_{\mathrm{H}_{\Gamma} \mathrm{O}}=\Psi / / \Lambda$
$\frac{c_{\mathrm{Oil}}}{\mathrm{c}_{\mathrm{H}_{\mathrm{Y}} \mathrm{O}}}=\frac{1 / q \gamma}{\mu / / \Lambda}=o / \mu V$
$\mathrm{Q}=\mathrm{mc} \Delta \theta \Rightarrow \mathrm{Q}=\left(1 \circ \mathrm{~mL} \times \circ / \wedge \frac{\mathrm{g}}{\mathrm{mL}}\right) \times 1 / 9 \vee \frac{\mathrm{~J}}{\mathrm{~g} .{ }^{\circ} \mathrm{C}}$
$\times\left(\varepsilon_{0}-r_{0}\right)^{\circ} \mathrm{C}=\mu \vee r \wedge \mathrm{~J}$
?cal $=\operatorname{rrr\wedge J} \times \frac{i c a l}{\mu / / \wedge J}=1 / r / \mathrm{cal}$
(1 Vr
بررسى عبارتها:

 -

(F VF
 مشخصات زير در نظر كرفت:

- بخش عمدئ انرزى موجود در شير هنگَام فرايند كوارش و سوختوساز به بدن $\left|Q_{\Gamma}\right|>\left|Q_{1}\right|$

میرسد، يعنى:
با انجام يك واكنش شيميايى و تغيير در شيؤ اتصـال اتههـا

 - در متـانول (CH , C-O وجـود دارد. بنـابراين مجمـوع آنتـالپی پيونـدهاى O-H, roq.-($r \times \not \times \backslash \Delta)=\lambda \& \Delta \mathrm{~kJ} . \mathrm{mol}^{-1} \quad$ برابر است با: $\mathrm{O}-\mathrm{H}$

بنابراين آنتالپی پیيوند C-C برابر است با:
$r \wedge F_{0}-(\varphi \times Y \mid \Delta)=r \Delta \cdot \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

بنابراين اختلاف پتانسيل الكتريكى دو سر مقاومت R, برابر است با: $\varepsilon=V_{1}+V_{A B} \Rightarrow V_{1}=r_{0}-r=1 V \mathrm{~V}$

جريان عبورى از مقاومت R, برابر است با:
$R_{1}=\frac{V_{1}}{I_{1}} \Rightarrow I_{1}=\frac{V_{1}}{R_{1}}=\frac{1 \mathrm{~V}}{r}=\Lambda / \Delta \mathrm{A}$
مقاومت ${ }^{\text {R }}$ و مقاومت معادل AB با هم متوالى هستند، بنابراين: $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{AB}}=\lambda / \Delta \mathrm{A}$

مقاومت معادل بين دو نقطئ A و B برابر است با:
$\mathrm{R}_{\mathrm{AB}}=\left(\frac{\mathrm{V}}{\mathrm{I}}\right)_{\mathrm{AB}}=\frac{r}{\frac{V V}{r}}=\frac{\varepsilon}{1 V} \Omega$
$R_{A B}=\frac{R_{r} \times R_{r}}{R_{r}+R_{r}} \Rightarrow \frac{\varphi}{1 V}=\frac{1 r R_{r}}{1 r+R_{r}} \Rightarrow v r+\varepsilon R_{r}=r \circ \uparrow R_{r}: ب ن ا ب ر ا ي ن \quad$
$\Rightarrow 19 \lambda R_{r}=V r \Rightarrow R_{r}=\frac{V r}{19 \lambda}=\frac{r q}{99}=\frac{r}{11} \Omega$
مقاومت معادل مدار برابر است با:
$R_{\text {eq }}=R_{1}+R_{A B}=r+\frac{\varepsilon}{1 v}=\frac{r_{0}}{1 v} \Omega$
بنابراين نسبت خواستهشده برابر است با:
$\frac{R_{e q}}{R_{r}}=\frac{\frac{\varphi_{0}}{\frac{1 v}{r}}}{\frac{r}{11}}=\frac{r \cdot \times 11}{\mu \times 1 v}=\frac{11 \circ}{1 v}$
(1 99 با توجه به اينكه جرم و حجم سـيم ثابـت اسـت، بـا دو برابـر
شدن طول سيم، سطح مقطع آن نصف شده، بنابراين:
$R=\frac{\rho L}{A} \xrightarrow{ت} \frac{R_{Y}}{R_{1}}=\frac{L_{Y}}{L_{1}} \times \frac{A_{1}}{A_{Y}}$
$\xrightarrow[A_{r}=\frac{1}{r} A_{1}]{L_{L_{1}}=r L_{1}} \frac{R_{r}}{R_{1}}=r \times \frac{1}{\frac{1}{r}}=r$
با توجه به اينكه اختلاف پتانسيل الكتريكى دو سر سيم ثابت اسـتـ، طبـق قـا
اههم، جريان الكتريكى عبورى از آن با مقاومت سيم رابطهٔ عكس دارد و داريمه:
$R=\frac{V}{I} \xrightarrow{ت} \frac{I_{Y}}{I_{1}}=\frac{R_{1}}{R_{r}} \Rightarrow \frac{I_{Y}}{\varphi}=\frac{1}{\varphi} \Rightarrow I_{r}=1 \mathrm{~A}$
مدار سادهشده به صورت زير است: Yo

$R^{\prime}=R_{r, r, \Delta}=\frac{R}{r}+R=\frac{r}{r} R$
$\frac{1}{R_{\mathrm{eq}}}=\frac{1}{1 r}+\frac{1}{\frac{r}{r} \mathrm{R}}+\frac{1}{\mathrm{R}}=\frac{1}{1 r}+\frac{r}{r \mathrm{R}}+\frac{1}{\mathrm{R}}$
$\Rightarrow \frac{1}{R_{e q}}=\frac{R+\Lambda+1 r}{1 r R}=\frac{R+r_{0}}{1 r R}$

$\Rightarrow R+r_{0}=r \wedge \Rightarrow R=r \wedge-r_{0}=r \wedge \Omega$
(r Ar
rCO $(\mathrm{g})+\mathrm{rNO}(\mathrm{g}) \rightarrow \mathrm{N}_{\mathrm{r}}(\mathrm{g})+\mathrm{CO}_{\Gamma}(\mathrm{g})$

$\Delta H(g)=[r \Delta H(C \equiv O)+r \Delta H(N=O)]$
$-[\Delta \mathrm{H}(\mathrm{N} \equiv \mathrm{N})]+\varphi \Delta \mathrm{H}(\mathrm{C}=\mathrm{O})]$
$=[r(1 \circ \vee \circ)+r(\varphi \circ v)]-[9 \varphi \Delta+\varphi(\Lambda \circ \circ)]=-v a \mid k J$
$? \mathrm{~kJ}=r / \lambda \mathrm{LN}_{r} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{r}}{r r / \& \mathrm{~L} \mathrm{~N}_{r}} \times \frac{\mathrm{v} 91 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{~N}_{r}} \simeq 99 \mathrm{~kJ}$
(1 Ar هيدروكربن مورد نظر داراى ^ پيوند دوَانه C=C مول از اين پيوندها با يك مول HY واكنش داده و طـى آن 1 پ پيونـد C-C ¢1 پيوند C-H جديد به دست مى آيد.

$\Delta \mathrm{H}(\mathrm{H})=[\wedge \Delta \mathrm{H}(\mathrm{C}=\mathrm{C})+\wedge(\mathrm{H}-\mathrm{H})]$
$-[\wedge(\mathrm{C}-\mathrm{C})+1 \varphi(\mathrm{C}-\mathrm{H})]$

$=-9 r \cdot k J$ (كرما آزاد مى شود)

F F AF آن، كمتر از سوختن الماس است.
ΔH (سوختن گرافيت) =-rqr/ $\Delta \mathrm{kJ}$
ΔH (سوختن الماس) = $=-r q r / \Delta-1 / 9=-r q \Delta / ヶ k J$

براى پيدا كردن b نيز خواهيم داشت:
$\left[\begin{array}{cc}\omega \mathrm{k} & \mathrm{kJ} \\ \mathrm{k} & \mathrm{r} 9 \Delta / \uparrow \\ \mathrm{b} & 1000\end{array}\right] \Rightarrow b \simeq r \circ / r \Delta \mathrm{~g}$
-

- ترماى يكـ واكنش در دما و فشـار ثابـت، بــه نــوع ومقــدار واكنشدهنـــدهها بستگى دارد.
- با افزايش مقدار فراور دههاى يك واكنش، H با واكنش نيز به همان نسـبت افزايش مى يابد.
 انجام واكنشهاى گرماگير ((F)) با جذب انرثى همراه است. (F AV
(r بـ متفاوتى وجود دارند، به كار بردن اصطلاح »ميانگّين آنتالیى پيونـده مناسـبتر از »آنتاليى پيونده است.
 بنابراين آنتاليى پيوند
 $\frac{1900}{r}=10 \circ \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \quad$ برابر است با: $\mathrm{C}=\mathrm{O}=\mathrm{O}$
 پی پيوند C=C است، بنابراين مجموع آنتاليىهاى پيوندهاى A برابر است با: $(\lambda \digamma \Delta)+(\wedge \circ \circ)+\mu(r \Delta \circ)+\Delta(\mu \backslash \Delta)+r(\varepsilon r \circ)=\varepsilon 9 \wedge \circ \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
- © Y V V
- مقدار گرمايى كه A از دست مىدهد برابر با مقدار گرمايى اسـت كـه B B $\left|\mathrm{Q}_{\mathrm{A}}\right|=\mathrm{Q}_{\mathrm{B}} \Rightarrow\left|\mathrm{m}_{\mathrm{A}} \cdot \mathrm{c}_{\mathrm{A}} \cdot \Delta \theta_{\mathrm{A}}\right|=\mathrm{m}_{\mathrm{B}} \cdot \mathrm{c}_{\mathrm{B}} \cdot \Delta \theta_{\mathrm{B}} \quad$ دست مى آورد.
 $\Rightarrow r I\left(\varepsilon_{0}-\theta_{\mathrm{e}}\right)=r \mu / \Delta\left(\theta_{\mathrm{e}}-r_{0}\right) \Rightarrow\left|r \varepsilon_{0}-r\right| \theta_{\mathrm{e}}$
$=r r / \Delta \theta_{\mathrm{e}}-1 \cdot r \Delta \Rightarrow r r q \Delta=\Delta \Delta / \Delta \theta_{\mathrm{e}} \Rightarrow \theta_{\mathrm{e}}=r 1 / r \Delta^{\circ} \mathrm{C}$
- آنتاليى پيوند، مقدار انـرزى لازم بـراى شكسـتن يـــى مـول
 - مطابق تعريف فوق مقدار گرماى مبادلهشده در واكنش آخر، معـادل آنتـاليى پييوند $\mathrm{C} \equiv \mathrm{C}$ است
- شكل درست ساير واكنشها به صورت زير است:
- $\frac{1}{4} \mathrm{CH}_{\mathrm{r}}(\mathrm{g}) \rightarrow \frac{1}{\mathrm{r}} \mathrm{C}(\mathrm{g})+\mathrm{H}(\mathrm{g})$
- $\mathrm{IF}(\mathrm{g}) \rightarrow \mathrm{I}(\mathrm{g})+\mathrm{F}(\mathrm{g})$
- $\frac{1}{r} \mathrm{H}_{r} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\frac{1}{r} \mathrm{O}(\mathrm{g})$
$\mathrm{Q}=\mathrm{mc} \Delta \theta \Rightarrow \operatorname{l\Delta r} \cdot \mathrm{J}=1 \mathrm{~J} \circ \circ \mathrm{~g} \times \mathrm{T} / \Delta \frac{\mathrm{J}}{\mathrm{g} .{ }^{\circ} \mathrm{C}} \times \Delta \theta$
$\Rightarrow \Delta \theta=\Delta / \circ \wedge^{\circ} \mathrm{C} \equiv \Delta / \circ \wedge \mathrm{K}$

 رفتارهاى فيزيكى و شيميايى متفاوتى الـى دارنى
روغن داراى حالت فيزيكى مايع بوده، اما حر اربى جامي جامد استى

 مىتواند پيوند(هاى) دوكانه وجود داشته باشد. ع ع 11 عبارتهاى اول و دوم درست هستند.

بررسى عبارتها:

 - در واكنشهاى كرماده، مقدارى انرثى از سامانه به محيط انتقال يافته و دمـا افزايش مى يابد.

هنگامى كه يك رود در يــى سـمت چچـاه باشـد (در شـكل در 1 9V
سمت چپ) مخروط افت چاه غير قرينه شده و در سمت رود، سـطح ايسـتابى
عمق كمترى خواهد داشت. (»گفتوگو كنيد" صفحئ مه كتاب درسى) (1 91 1 رسها بسيار متخلخلاند و به علت ريزبودن ذرات، نفوذپـذيرى بسيار اندكى دارند و هر چه تخلخل بيشـتر باشـد، آب بيشـترى را مىتوانـد در خود نگَه دارد.
خ9 99
زمين شده و ضخامت منطقُٔ اشباع آب زيرزمينى بيشتر مىشود.
 ضخامت Y
$\frac{(\mathrm{cm}) r / \Delta \times я}{(س) r \circ \circ \times 9}=\frac{1 \Delta}{x} \Rightarrow x=1 \wedge \circ \circ 0$
(r 101
بودن در برابر تنش مقاوم نيست و مناسب پیسازه نمىباشد. (F 10\% حركت كند و موجب تجمع آب و تشكيل درياچه گردد.

 نمک) زودتر و سريعتر از سنگگهاى آهكى ايجاد مىشـود و در نتيجـهـ ســنـع آهكى مقاومت بيشترى نسبت به سنگَ گیج دارد.
(F 10F F و در صورتىكه تنش آرام و طـولانى وارد شـود، شكسـت صـورت نمىگيـرد و و لايهها واكنش خميرى از خود نشان مىدهند.
(10 ه يا سنگَ پیسازه، گمانهها يا چال هاى باريكـ و عميقى در نقاط مختلف محـل

احداث سازه حفر مىشود.
(Y 19
 دوگانه C=C

 $\mathrm{CH}_{r}-\mathrm{CH}_{r}-\mathrm{CH}_{r}-\mathrm{CH}_{r}-\mathrm{CH}_{r}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{r}$ فرمـول مولكـولى ســادهترين آلدهيـد و سـادهترين كتـون بـه ترتيب ${ }^{\text {CH}}{ }^{\text {و }}{ }^{\text {C }}{ }^{\text {است }} \mathrm{H}_{\varphi} \mathrm{O}$
$\mathrm{CH}_{r} \mathrm{O}+\mathrm{O}_{r} \rightarrow \mathrm{CO}_{r}+\mathrm{H}_{r} \mathrm{O}$ $a=1$
$\mathrm{C}_{r} \mathrm{H}_{\varphi} \mathrm{O}+\mu \mathrm{O}_{r} \rightarrow \mu \mathrm{CO}_{r}+\mu \mathrm{H}_{r} \mathrm{O} \quad \mathrm{b}=\mu$
r ar عبارتهاى دوم و چهارم درست هستند.
بررسى عبارتهاى نادرست:

- بنزآلدهيد جزو مواد آلى موجود در بادام است.
- نسبت شمار جفت الكترونهاى پيوندى به ناپيوندى آن برابر با $\frac{1 \wedge}{\text { است. }}$

تعيين ΔH واكنشهايى مناسب مىدادند كه همأ مواد شركتكننده در آنهــا
به حالت گازند؛ مانند واكنشهاى اول و دوم.
P PF PF
عمده وابسته به اتر، الكل، كتون و آلدهيد است.

(190 90 فقط عبارت نخست درست است.
به موادى كه فرمول مولكولى آنها يكسان اما ساختارهاى متفاوتى دارند، ايزومر مىگويند. براى سوختن يكى ماده نيازى به دانستن ساختار آن ماده نيست و از روى فرمول مولكولى مىتــوان معادلـــٔ واكــنش سـوختـن كامــل آن را نوشـت و ضرايب هر كدام از اجزاء را به دست آورد موارد گفته شده در ساير عبارتها به ساختار ماده بستگى دارد.

٪ در ابتدا حجم آب عبورى (دبى) را بر حسـب متـر مكعـب بـر ثانيه به دست مىآوريم:
$=\frac{V r_{0}}{r \times r 900}=0 / / \frac{\mathrm{m}^{r}}{\mathrm{~s}}$

$$
\begin{aligned}
& \text { با توجه به فرمول محاسبئ دبى آب داريم: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سطح مقطع دبى } \\
& \left(\frac{\mathrm{m}^{r}}{\mathrm{~s}}\right)\left(\mathrm{m}^{r}\right) \\
& x=\frac{0 / 1}{r / \Delta}=\frac{1}{r \Delta} m=0 / \circ \mu \mathrm{m}
\end{aligned}
$$

