

المي إرسافر,

استفاده از ماشين حساب ممنوع مى باشد
اين آزمون نمره منفى دارد

* *اوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلهٔ عدم حضور شما در جلسهٔ آزمون است.

با آكاهى كامل، يكسان بودن شمارهٔ صندلى خود را \qquad با شمارهٔ داوطلبى \qquad اينجانب با شمارهٔ داوطلبى مندرج در بالاى كارت ورود به جلسه، بالای پاسخنامه و دفتر چهُ سؤالات، نوع و كد كنترل درج شا شده بر روى دفتر چهٔ سؤالات تأييد مىنمايم.

امضا:
(f) نوترون
$\beta^{-}{ }^{\mu}$
β^{+}(r)
) ()

$$
\begin{aligned}
& K_{r}=V_{1} K_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 149 \text { (4) }
\end{aligned}
$$

$$
E_{r}=E_{1} \rightarrow(U)=V_{1}^{m}=Y x \left\lvert\, \circ x h=r \Lambda_{00} \rightarrow \frac{h=1 Y_{0 m}}{\sum}\right.
$$

$m g h \frac{1}{r} m v^{r}$

$$
E_{1}=\beta^{\circ}+K=\frac{1}{r}{ }^{r} K^{r} V_{1}^{r}=\frac{V_{1}^{r}}{2}
$$

$$
\begin{aligned}
& \Lambda Y_{0}+\rho V V_{1}^{r}=V_{1}^{r} \\
& \Lambda Y_{0}=\frac{r}{10} V_{1}^{r} \rightarrow V_{1}^{r}=Y \Lambda \cdots
\end{aligned}
$$

 رسيده است. اختلاف بيشترين دما و كمترين دماى پل در آن سال، چند درجهٔ سلسيوس است؟

$$
\left(\alpha=1, r \Delta \times 10^{-\Delta} \mathbf{K}^{-1}\right)
$$

$1 \frac{D}{L} 100(4$

$$
\begin{aligned}
\Delta L & =L_{1} \alpha \Delta \theta \\
q & =900 \times \frac{\partial}{k} \times 10_{0}^{-d} \Delta \theta \rightarrow \Delta \theta=\Lambda_{0}
\end{aligned}
$$

در كدام فرايند، كار انجامشده روى گَاز مثبت است و انرثى درونى گاز كاهش مىيابد؟ -Y\&A
¢ (انبساط بىدررو
ץ) انبساط همفششار
 VFl) تراكم هممفشار

(r)

$$
4,4(1
$$

A متصرك : $a=\rho^{k}$

مى (1) ثند؟ (مقاومت هوا ناحیز فرض شود.)
(Y) افزايش مى يابد.)) ثابت مىماند.

تَا
سْروعمسا بِّ

$$
\begin{aligned}
& \text {, } 1, \text { ~~ } \\
& \text { •هِّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rf/人 (f) }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta x_{1}=\Delta x_{r} \longrightarrow \frac{1}{k} a \times y^{r}=\frac{y}{\lambda}(a+\lambda) \times r^{r} \longrightarrow \frac{a=1 r^{r}}{r} \\
& \frac{1}{r} a t^{r}+\sqrt{r} t^{\circ} \\
& \text { roat }+\cos
\end{aligned}
$$

 در همان جهت حركت مىكند. وقتى فاصلهٔ بين آنها به F\& متر كاهش مى يابد، خودرو A با شتاب ثابت
 لحظهٔ رسيدن به خودرو A پند متر بر ثانيه است؟

دو متحرك در مبدأ زمان، از مبدأ محور ميگَذرند و نمودار سرعت ـ زمان آنها مطابق شكل است. در بازهُ زمانى كه صرّ

((1
.
 (f) متر كاهش مییيابد.
$-\mathrm{rf}$

$$
V r-\Lambda=\frac{4 r_{m}^{r}}{2}
$$

 خالص متوسطى كه در بازء زمانى $-9 \vec{i}$ ($4 \vec{i}(\stackrel{r}{2}$ $-r \vec{i}(r$
ri

$$
\begin{aligned}
& t_{1}=1 \longrightarrow \vec{P}=-r \\
& t_{r}=r \longrightarrow \vec{P}=r \\
& \vec{P}=r t-4
\end{aligned}
$$

$$
F_{a v}=\frac{\Delta P}{\Delta t}=\frac{r-(-r)}{r}=\frac{r N}{\Sigma}
$$

رو نٌ تَستى:

Gom: $\frac{F=r}{2}$

هاهـ جسمى به جرم هkg روى سطح افقى قرار دارد و ضريب اصطكاك ايستايى و جنبشى بين جسم و سطح بهتر تيب

$$
N=m g=d_{0}
$$

$r \Delta \sqrt{a}, 0, r(r$ $10 \sqrt{r q}, 0, r(1$ ravag , וr (f $10 \sqrt{r a}$, $1, r * a r$

$$
\begin{aligned}
& F-\underbrace{f}_{K}=m a \rightarrow r \varphi_{-} r_{0}=\partial a \rightarrow \frac{a=1, r}{2} r \\
& f_{K}=/_{K} N=K_{K} m g=\frac{r}{1_{0}} \times \partial_{0}=r_{0}
\end{aligned}
$$

$$
R=\sqrt{N^{r}+f_{K}^{r}}=\sqrt{\partial_{0}^{r}+Y_{0}^{r}}=\frac{10 \sqrt{Y q}}{R}
$$

هِ مركزكَراى خودرو چجند نيوتون است و كدام نيرو آن را تأمين مى كند؟

$$
f_{s}=\frac{m V^{r}}{r}=\frac{r \times \delta^{r}}{r}=\frac{r \Delta}{\zeta}
$$

$$
100,000(4
$$

100 g 1ro (r
roo g lro (r roo g , DOO (

$$
V=? f=\frac{4}{10} \times r_{00}=1 \mu_{0} \mathrm{~m} / \mathrm{s}
$$

$$
f_{1}=\frac{V}{Y L}=\frac{1 Y_{0}}{Y_{x, Y}}=\frac{100 H 2}{\sum}
$$

$$
B_{Y}=? B_{1} \quad P_{Y}=Y P_{1} \quad r_{Y}=\frac{1}{Y} r_{1}
$$

- اگَر فاصله از حشمهُ صوت نصف شود و همزمان توان چشمهٔ صوت دو برابر شود، تراز شدت صوت چگًونه تغيير مى
(Y 9 برابر میشود.

(1)

٪

$$
\begin{aligned}
& I=\frac{p x r}{\left.r \pi r^{r} \frac{1}{r}\right)^{r}} \cdot 2 g^{2}\left(3 y^{\prime} \Lambda r I\right. \\
& \beta_{r}-\beta_{1}=\log \cdot g\left(\frac{I_{r}}{I_{1}} \mu^{r_{r}^{r}}=r \cdot l \cdot g r=\frac{9}{2}\right.
\end{aligned}
$$

طول) چحند ثانيه است؟

$$
1,1(\varphi \quad 1,9(\Gamma)
$$

$$
T=r \pi \sqrt{\frac{L}{g}} \rightarrow \frac{T_{r}}{T_{1}}=\sqrt{\frac{L_{r}}{L_{1}}} \rightarrow\left(\frac{q}{\Lambda}\right)^{r}=\frac{L_{1+N}}{L_{1}} \rightarrow \frac{L_{1}=4 K \mathrm{Cm}}{2}
$$

$$
L_{r}-L_{1}=V \rightarrow \frac{\Lambda \mid}{4 r^{6}} L_{1}-L_{1}=\left\lvert\, V=\frac{\mid V}{4 r_{1}} L_{1}=1 V \rightarrow \frac{L_{1}=4 r \mathrm{~cm}}{2}\right.
$$

$$
T=r \not x \sqrt{\frac{14 s}{\pi^{x}}}=\frac{1,4}{2}
$$

$$
\omega=\partial \cdot \pi \rightarrow T=\frac{1}{r \Delta}
$$

 در بازه́ زمانى

$$
\begin{aligned}
& \text { 4) (f) } \\
& \varphi / \Delta(r \\
& r(r \Delta t=/ \sigma \\
& s_{a V}=\frac{L}{\Delta t} \rightarrow L=1, \delta \times / \sigma=/ \sigma^{\mu} m=\frac{\mu \mathrm{Cm}}{\sum} \\
& n=\frac{\Delta t}{T}=\frac{\frac{r}{100}}{\frac{1}{r \lambda}}=/ \Delta \\
& r A=r \mathrm{~cm} \\
& A=1, \partial \mathrm{~cm}
\end{aligned}
$$

 فاصلئ دو تكيدكاه Docm و تندى موج عرضى در آن

$$
\begin{aligned}
& \rightarrow \\
& \text { ذرات تار يك نوسان انجام دهند؟ } \\
& T=\text { ? ra(} \\
& r(r \\
& \frac{\lambda}{r}=d_{0} \longrightarrow \frac{\lambda=100 \mathrm{~cm}}{\Gamma} \\
& \text { fifl } \\
& V=\lambda f \rightarrow f=\frac{Y d_{0}}{1}=Y d_{0} H Z \quad T=\frac{1}{Y d_{0}}=\frac{Y}{1000}=\frac{Y_{m S}}{\Sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \text { كداماند؟ } \\
& 9 \text { gris } \quad \text { Fgr } \\
& \text { qg) (r } \\
& \text { foll } 12
\end{aligned}
$$

$1 \pi, 4-\mu \gamma=1 r, v d e v$
lifer riker l/dler /nder dider . بأى'

 $K_{r}=4 K_{1}$

$$
\frac{h c=1 M_{00 e V} \cdot n m}{\Gamma}
$$

$$
K_{m}=h f-w_{0}=\frac{h c}{\lambda}-w_{0}
$$

$$
\begin{aligned}
& k_{Y}=\varphi k_{1} \\
& \frac{h c}{\lambda_{1 / r}}-\varphi_{0}^{T_{0}^{r}}=\varphi\left(\frac{h c}{\lambda_{1}}-\psi_{0}^{\pi}\right)
\end{aligned}
$$

$$
\frac{r h c}{\lambda_{1}}-r=\frac{4 h c}{\lambda_{1}}-r r
$$

$$
\frac{\operatorname{ch}^{c} \lambda^{1900}}{\lambda}=\frac{\lambda=\gamma \operatorname{ronm}_{\text {on }}^{2}}{2}
$$

-91B
پتانسيل اوليئ آن شود؟

$$
\frac{1}{f}()
$$

$$
\begin{aligned}
& V_{Y}=\frac{r}{r} V_{1} \\
& \frac{9}{19}(4 \\
& \frac{v}{19} \pi r / \frac{r}{4}(r \\
& \left.u=\frac{1}{r}\right)<v^{r} \longrightarrow \frac{u_{r}}{u_{1}}=\left(\frac{v_{r}}{v_{1}}\right)^{r} \longrightarrow \frac{u_{r}}{u_{1}}=\left(\frac{r}{r}\right)^{r}=\frac{9}{19} \\
& \Delta u=u_{r}-u_{1}=\frac{9}{14} u_{1}-u_{1}=-\frac{\frac{v}{14} u_{1}}{2}
\end{aligned}
$$

/
(1) (10

$$
\begin{aligned}
& +|\xrightarrow[A]{\Theta \longrightarrow \text { A }}| \overrightarrow{\text { A }}
\end{aligned}
$$

$$
\begin{aligned}
& V_{A}>V_{B} \rightarrow \frac{V_{B}-V_{A}<0}{\Sigma}
\end{aligned}
$$

-9 B B B

$$
\mathrm{q}_{\boldsymbol{r}}=r_{\mu \mathrm{C}}
$$

 خالص در نقطء M هند برابر میشود؟ $\sqrt{a}(1 /)$ $r \sqrt{\Delta}(T$ $\frac{r}{r}\left({ }^{r}\right.$
$\frac{r}{r}\left(e^{\prime}\right.$

$$
\frac{\sqrt{10} E}{\sqrt{Y} E}=\frac{\sqrt{d}}{\Sigma}
$$

－94C
 مى گَذرد، چند آمیر است؟

$0, r(1$
0 orer
of（4）
$0, \mathrm{~b}\left(\psi^{*}\right.$
人い
．${ }^{\text {r }}$
（\％）

$$
\begin{aligned}
& I=\frac{\varepsilon}{R_{T}+r} \\
& I=\frac{\varphi}{\Lambda+r}=\mu
\end{aligned}
$$

$$
\begin{aligned}
& \text { > } \\
& \text { Ir (} \\
& 19 \text { (} 1 \\
& \text { 1人 (} \\
& \text { HEMS }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma!\sigma^{\top}=r=\varepsilon-I r-I R \\
& r=1 r-N \partial(r+4)=4 V \\
& \text {, مرش : }: R=\frac{V}{I}=\frac{Y}{\pi \gamma}=\frac{Y Y}{\Sigma}
\end{aligned}
$$

-99B

$$
\begin{aligned}
& V=I_{\wp} R_{\rho} \sigma=\frac{\varepsilon}{R_{T+r}} R_{T}
\end{aligned}
$$

$$
\begin{aligned}
& R_{T}=r R
\end{aligned}
$$

با بَ.

$$
R_{T}=Y R
$$

$$
\frac{\frac{r x}{d} \mathscr{L}}{\frac{r \mathscr{y}}{v} \mathscr{L}}=\frac{14}{\frac{1 d}{\Sigma}}
$$

-9VB

rivelol

$$
B=\frac{r_{0} N I}{Y R}=\frac{\left|r \times 10^{-V} \times\right| \times / \delta}{Y \times / \|}=r \times\left.\right|_{0} ^{-r^{r \sqrt{r}} \times 10^{-\varphi}(r} r \times 10^{-\varphi}(r)
$$

$$
\int_{\left.i x\right|_{0} ^{-4}}^{4 \sqrt{i} x 1_{0}^{-4}}
$$

$$
B_{T}=\sqrt{r_{r}^{r}+(r \sqrt{r})^{r}}=\frac{r \sqrt{r}}{r}
$$

-91B B يكى الكترون از محيطى مى گَذرد كه شامل يك ميكان يكنواخت مغناطيسى و يكى ميدان يكنواخت الكتريكى است.

 Y (Y) هر دو ميدان عمود بر مسير حركت الكترون و در خلاف جهت يكديگرند.
 (4.ل ميدان الكتريكى حتماً عمود بر مسير حركت الكترون است ولى ميدان مغناطيسى ممكن است بر اين مسير عمود نباشد.

$$
9,4(I V
$$

$N=1$

$$
\begin{aligned}
& \Delta B=-Y_{000 \times 10^{-r}} \quad \text { نيروى محر كؤ القايى متوسط } \\
& 1, \Gamma(4 \quad 1, r \sqrt{r}(r \\
& 0,9 \text { (r) } \\
& 0,9 \sqrt{r} \text { (1) } \\
& \varepsilon=-N A \cos \theta \frac{\Delta B}{\Delta t}=-\left.\left|\times r_{\mu}\right|\right|^{\mu} \times 1_{0}^{-r} \times \frac{1}{Y} \times \frac{-\mu}{\mid d_{\mu} v \times l_{0}^{-r}}=\frac{\mu}{\frac{\mu}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 1,9(\Gamma \\
& \text { G4 (Y } \\
& B=\frac{\mu A N^{r}}{\ell}=\frac{f \times r /| |^{f} \times 1_{0}^{-V_{x}} \times \wedge \times 1_{0}^{-r} \times 1_{0}^{\varphi}}{18 / V \times 1_{0}^{-r}}=\frac{y, r^{r} m H}{\Gamma} \\
& A=\pi r^{r}=r / \|\left. r_{x}^{r}\right|_{-r} ^{-r}
\end{aligned}
$$

-VIA

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}}>\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}}(1) \\
& \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}>\mathrm{P}_{\mathrm{C}}>\mathrm{P}_{\mathrm{D}}(r \\
& \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{D}}^{(r} \\
& \mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{D}}(\uparrow
\end{aligned}
$$

$$
A=\Delta \times 10^{-4}
$$

- در يكى ديگَ زوديز، مساحت روزنئ خروج بخار آب ه ميلىمتر مربع است. جرم وزنهٔ روى روزنه چند گَرم باشد، تا

$$
\begin{aligned}
& \text { DO (4) } \\
& 4 \circ \text { (} \\
& \text { ra (r } \\
& \text { ro () } \\
& P g=10{ }^{d} P_{a}=\frac{m g}{A} \rightarrow \frac{m \times 10}{\partial \times 10^{-4}}=10^{\lambda} \rightarrow 10 m=\lambda \rightarrow m=/ 0 \partial \mathrm{~kg}=\frac{\partial \cdot g}{\Sigma}
\end{aligned}
$$

(VrB

$$
\theta_{e}=\frac{m_{1} c_{1} \theta_{1}+m_{r} c_{r} \theta_{r}+m_{r} c_{r} \theta_{r}}{m_{1} c_{1}+m_{r} c_{r}+m_{r} c_{r}}
$$

- vهB B

$$
\begin{aligned}
& P_{1}=P_{0}+\frac{m g}{A}=P_{0}+\frac{\mid V / d}{\delta_{0} \times\left.\right|_{0} ^{-r}}=P_{0}+r d_{001,1 \times 10^{\circ}(1)}^{1, r \times 10^{\circ}(r} \\
& P_{Y}=P_{0}+\frac{\operatorname{lomg}}{A}=P_{0}+\frac{1 V d}{d_{0} \times 10_{0}^{-T}}=P_{0+T}+d_{0.6,9 \times 10^{q}}^{9,9 \times 10^{\dagger}(\%)}(\%)
\end{aligned}
$$

$P V=M R$

$$
\begin{aligned}
P_{1} V_{1}=P_{r} V_{r} \rightarrow P_{1} g h_{1}=P_{r} A h_{r} \rightarrow & \left(P_{0}+r \partial_{000}\right) x r_{\phi}^{r}=\left(P_{0}+r \delta_{000}\right) \times r_{f} \\
& r P_{0}+1 Y_{0.00}=r P_{0}+1 . d_{0.0} \\
& P_{0}=q 1.00 P_{a)}
\end{aligned}
$$

امسِّإرامْ

